原 著

モクセイ科植物の成分研究(第 22 報 ¹⁾) キンモクセイの葉の 新規セコイリドイド配糖体について

町田 浩一, 山内 恵, 菊地 正雄

Studies on the Constituents of *Osmanthus* Species. XXII. Two New Secoiridoid Glycosides from the Leaves of *Osmanthus fragrans* Lour. var. aurantiacus MAKINO

Koichi Machida, Megumi Yamauchi, and Masao Kikuchi

(Received November 20, 2009)

Two new secoiridoid glycosides, named demethyl 10-acetoxyligustroside (1) and demethyl 10-acetoxyisoligustroside (2), were isolated from the leaves of *Osmanthus fragrans* Lour. var. aurantiacus Makino. Their structures were established on the basis of NMR, MS and chemical data. The NMR spectral features of these compounds are almost superimposable, however, 1 and 2 can be distinguished by the chemical shifts of the H-3, C-3 and C-4 in their NMR spectra.

Key words — Osmanthus fragrans; Oleaceae; secoiridoid glycoside

著者らは、モクセイ科植物の成分研究の一環として、ヒイラギ Osmanthus ilicifolius の葉から、2種の新規 oleoside タイプセコイリドイド二量体、5種の新規 oleoside タイプセコイリドイド二配糖体及び6種の新規ネオリグナン配糖体を含む30種の化合物を単離し、それらの化学構造について報告した. 1-60本論文では、同属植物のキンモクセイ O. fragrans Lour. var. aurantiacus Makino の葉から2種の新規セコイリドイド配糖体を単離することができたので、これらの化学構造について報告する。なお、キンモクセイの葉の化学成分については、既に著者らにより3種の新規アシル化配糖体を含む24種の化合物が報告されている。780

化合物 1 は、比旋光度 -175.1° の無晶形粉末として得られ、高分解能(HR)-FAB-MS より分子式は $C_{26}H_{32}O_{14}$ と決定された.化合物 1 の 1 H-NMR スペクトルでは、パラ 2 置換ベンゼンプロトン $[\delta_{\rm H}$ 6.71(2H, d, J=8.5 Hz, H-3″, H-5″), 7.05(2H, d, J=8.5 Hz, H-2″, H-6″)],2 組の 3 置換オレフィンプロトン $[\delta_{\rm H}$ 7.52(1H, s, H-3), 6.08(1H, br t, J=6.3 Hz, H-8)],1個のアセタールプロトン $[\delta_{\rm H}$ 5.97(1H, br s, H-1)],1個のアノメリックプロトン $[\delta_{\rm H}$ 4.82(1H, d, J=7.8 Hz, H-1′)],5 組のメチレンプロトン $[\delta_{\rm H}$ 4.58(1H, ddd, J=13.2, 6.3, 1.5 Hz, H-10_A), 4.76(1H, br dd, J=13.2, 8.1 Hz, H-10_B), $\delta_{\rm H}$ 4.13(1H, dt, J=10.7, 7.1 Hz, H- $\alpha_{\rm A}$), 4.24(1H, dt, J=10.7, 7.1 Hz, H- $\alpha_{\rm B}$), $\delta_{\rm H}$ 3.67

HO
$$\begin{array}{c}
3'' & 2'' \\
& 6'' & 0
\end{array}$$

$$\begin{array}{c}
6 & 11 \\
& 10 \\
& 10
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 10 \\
& 10
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 10 \\
& 10
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 11 \\
& 11
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 11 \\
& 11
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 11 \\
& 11
\end{array}$$

$$\begin{array}{c}
1 & 11 \\
& 11 \\
& 11
\end{array}$$

Fig. 1. Structures of Compounds 1 and 2

Fig. 2. Main HMBC Correlations

Heavy lines indicated partial structures inferred from ¹H-¹H COSY.

 $(1H, dd, J=12.0, 5.9 Hz, H-6'_A), 3.89(1H, dd, J=12.0,$ 1.7 Hz, H-6'_B), $\delta_{\rm H}$ 2.82 (2H, br t, J = 7.1 Hz, H₂- β), $\delta_{\rm H}$ $2.49(1H, dd, J=15.1, 10.0 Hz, H-6_A), 2.81(1H, dd, J=$ 15.1, 3.7 Hz, H- 6_B)], 1 個のメチンプロトン $[\delta_H 3.99]$ (1H, dd, *J*=10.0, 3.7 Hz, H-5)] 及び1個のアセチル 基のプロトン [$\delta_{\rm H}$ 2.01 (3H, s, 10-OCOCH₃)] シグナ ルが観察された. ¹³C-NMR スペクトルでは、その化 学シフト値より β-glucopyranose の存在が確認され た. また、酸加水分解により D-glucose が得られた. これらのデータは、既に本植物から報告されている 10-acetoxyligustroside 7) とよく類似しているが、そ の11位カルボメトキシプロトン及びカーボンシグ ナルが消失していることから、化合物1の11位は カルボキシル基と推定される. そこで ¹H-¹H shift correlation spectroscopy (¹H-¹H COSY) によりプロ トンの連結性, さらに ¹H-detected heteronuclear multiple bond correlation (HMBC) スペクトルによ りプロトンとカーボンの遠隔カップリングをそれ ぞれ確認したところ、Fig. 2 に示す相関が確認され た. 以上のことから, 化合物 1 は demethyl 10acetoxyligustroside と決定した.

化合物 2 は、比旋光度 -151.0° の無晶形粉末として得られ、HR-FAB-MS より分子式は化合物 1 と同じ $C_{26}H_{32}O_{14}$ と決定された.化合物 2 の NMR スペクトルは、1 と非常によく類似しているが、3 位プロトン $[\delta_{\rm H}$ 7.43 (1H, s)]、3 位カーボン $[\delta_{\rm C}$ 153.2]、4 位カーボン $[\delta_{\rm C}$ ca. 112.9] シグナルにシフトが観察された.以上のことから、化合物 2 は、1 の 7 位に結合していた p-hydroxyphenethyl alcohol が 11 位カルボキシル基にエステル結合、すなわち、ムラサキハシドイ葉より報告されている isoligustroside 9

の7位 demethyl 体と推定された. ¹H-¹H COSY 及び HMBC スペクトルでは, Fig. 2 に示す相関が確認された. 以上のスペクトルデータから, 化合物 **2** は, demethyl 10-acetylisoligustroside と決定した.

実験の部

旋光度は日本分光 DIP-360 型,UV スペクトルはBeckman DU-64 型を使用し測定した.FAB-MS は日本電子 JMS-DX 303 型を使用し、FAB-MS のマトリックスにはグリセリンを用い測定した.「H-及び「3C-NMR スペクトルは,日本電子 JMN-GSX 400 型(「H: 400 MHz、「3C: 100 MHz)を使用し、内部標準物質に tetramethylsilane を用いて測定した.化学シフトは δ 値(ppm)で示し,結合定数(J)は Hz で表した(略語:s=singlet,d=doublet,t=triplet,dd=double doublet,dd=double doublet,m=multiplet,br=broad).カラムクロマトグラフィーには,Kieselgel 60(Merck,230 – 400 mesh),Sephadex LH-20(Pharmacia)を使用した.分取高速液体クロマトグラフィー(prep.HPLC)にはTosoh HPLC System を使用した.

分離 仙台市内で採集したキンモクセイの新鮮 葉 1.35 kg を MeOH で室温抽出し, 得られた MeOH エキス (195 g) を CHCl₃, AcOEt, n-BuOH, H₂O 各可 溶部に分画した. n-BuOH 可溶部をシリカゲルカラムクロマトグラフィー (CHCl₃-MeOH-H₂O 混液) に付し4分画した (frs. 1-4). Fr. 3 を Sephadex LH-20 カラムクロマトグラフィー[MeOH-H₂O(1:1)] に付して 13 分画し (frs. 3-1-3-13), Fr. 3-6 を prep. HPLC で精製 [column, TSK gel ODS-120T (7.8 mm

Table 1. If twite bata for compounds 1 and 2 (100 MHz, CD3CD)		
Position	1 multiplicity (J, Hz)	2 multiplicity (J, Hz)
1	5.97 br s	5.93 br s
3	7.52 s	7.43 s
5	3.99 dd (10.0, 3.7)	4.01 dd (10.0, 3.9)
6	2.49 dd (15.1, 10.0)	2.46 dd (15.1, 10.0)
	2.81 dd (15.1, 3.7)	2.87 dd (15.1, 3.9)
8	6.08 br t (6.3)	6.06 br t (6.3)
10	4.58 ddd (13.2, 6.3, 1.5)	4.62 ddd (13.4, 6.3, 1.7)
	4.76 br dd (13.2, 8.1)	4.77 dd (13.4, 8.3)
10-OCOCH ₃	2.01 s	2.01 s
1'	4.82 d (7.8)	4.82 d (7.8)
2'	3.39, overlapped	3.39, overlapped
3′	3.39, overlapped	3.39, overlapped
4'	3.39, overlapped	3.39, overlapped
5′	3.39, overlapped	3.39, overlapped
6′	3.67 dd (12.0, 5.9)	3.67 dd (12.0, 5.6)
	3.89 dd (12.0, 1.7)	3.88 dd (12.0, 1.7)
α	4.13 dt (10.7, 7.1)	4.12 dt (10.7, 7.0)
	4.24 dt (10.7, 7.1)	4.23 dt (10.7, 7.0)
eta	2.82 br t (7.1)	2.82 br t (7.0)
2", 6"	7.05 d (8.5)	7.05 d (8.5)
3", 5"	6.71 d (8.5)	6.71 d (8.5)

Table 1. ¹H-NMR Data for Compounds **1** and **2** (400 MHz, CD₃OD)

Table 2. 13 C-NMR Data for Compounds 1 and 2(100 MHz, CD₃OD)

Position 1 2 1 94.2 94.0 3 154.8 153.2 4 ca. 109.5 a ca. 112.9 a 5 32.6 33.0 6 41.1 41.2 7 173.0 173.1 8 124.2 123.8 9 134.2 134.8 10 61.9 62.1 11 ca. 170.0 a ca. 170.6 a 10-OCOCH3 172.6, 20.8 172.6, 20.8 1' 100.9 100.9 2' 74.8 74.8 3' 78.6 78.5 4' 71.5 71.5 5' 78.0 78.0 6' 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3 4" 157.1 157.1 </th <th>- 8- /</th> <th></th> <th></th>	- 8- /		
3 154.8 153.2 4 ca. 109.5 a ca. 112.9 a 5 32.6 33.0 6 41.1 41.2 7 173.0 173.1 8 124.2 123.8 9 134.2 134.8 10 61.9 62.1 11 ca. 170.0 a ca. 170.6 a 10-OCOCH ₃ 172.6, 20.8 172.6, 20.8 1′ 100.9 100.9 2′ 74.8 74.8 3′ 78.6 78.5 4′ 71.5 71.5 5′ 78.0 78.0 6′ 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1″ 130.0 130.0 2″, 6″ 131.0 131.0 3″, 5″ 116.4 116.3	Position	1	2
4	1	94.2	94.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	154.8	153.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	ca. 109.5 ^a	ca. 112.9 a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	32.6	33.0
8 124.2 123.8 9 134.2 134.8 10 61.9 62.1 11 $ca. 170.0^a$ $ca. 170.6^a$ 10-OCOCH ₃ $172.6, 20.8$ $172.6, 20.8$ 1' 100.9 100.9 2' 74.8 74.8 3' 78.6 78.5 4' 71.5 71.5 5' 78.0 78.0 6' 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	6	41.1	41.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	173.0	173.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	124.2	123.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	134.2	134.8
10-OCOCH_3 $172.6, 20.8$ $172.6, 20.8$ $1'$ 100.9 100.9 $2'$ 74.8 74.8 $3'$ 78.6 78.5 $4'$ 71.5 71.5 $5'$ 78.0 78.0 $6'$ 62.8 62.8 a 67.0 66.9 β 35.2 35.2 $1''$ 130.0 130.0 $2''$, $6''$ 131.0 131.0 $3''$, $5''$ 116.4 116.3	10	61.9	62.1
1' 100.9 100.9 2' 74.8 74.8 3' 78.6 78.5 4' 71.5 71.5 5' 78.0 78.0 6' 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	11	ca. 170.0 ^a	ca. 170.6 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-OCOCH ₃	172.6, 20.8	172.6, 20.8
3' 78.6 78.5 4' 71.5 71.5 5' 78.0 78.0 6' 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	1'	100.9	100.9
4' 71.5 71.5 5' 78.0 78.0 6' 62.8 62.8 a 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	2'	74.8	74.8
5′ 78.0 78.0 6′ 62.8 62.8 α 67.0 66.9 β 35.2 35.2 1″ 130.0 130.0 2″, 6″ 131.0 131.0 3″, 5″ 116.4 116.3	3′	78.6	78.5
6' 62.8 62.8 α 67.0 66.9 β 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	4'	71.5	71.5
a 67.0 66.9 β 35.2 35.2 $1''$ 130.0 130.0 $2''$, $6''$ 131.0 131.0 $3''$, $5''$ 116.4 116.3	5′	78.0	78.0
eta 35.2 35.2 1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	6'	62.8	62.8
1" 130.0 130.0 2", 6" 131.0 131.0 3", 5" 116.4 116.3	α	67.0	66.9
2", 6" 131.0 131.0 3", 5" 116.4 116.3	β	35.2	35.2
3", 5" 116.4 116.3	1"	130.0	130.0
	2", 6"	131.0	131.0
4" 157.1 157.1	3", 5"	116.4	116.3
	4"	157.1	157.1

^a Not detected directly, but the chemical shifts were obtained approximately from the HMBC spectra.

i.d.×30 cm, Tosoh); mobile phase, MeOH- H_2O (4:7, 4:11); flow rate, 1.0 ml/min; UV detector, 205 nm; column temperature, 40°C. column, Cosmosil 5SL(10 mm i.d.×25 cm, Nacalai); mobile phase, $CH_2Cl_2-MeOH-H_2O$ (70:10:1); flow rate, 1.5 ml/min; UV detector, 225 nm; column temperature, room temperature] して、化合物 1 (12.5 mg) 及び 2 (10.5 mg) を得た.

Demethyl 10-acetoxyligustroside (1) 無晶形粉末, $[a]_D^{25}-175.1^\circ(c=0.26, \text{MeOH})$. UV λ_{max} (MeOH) nm (log ε): 203 (4.1), 225 (4.3), 277 (3.3). FAB-MS $^{\text{m}}\!\!/_z$: 591 [M+Na]+. HR-FAB-MS $^{\text{m}}\!\!/_z$: 591.1686 ([M+Na]+, Calcd for C₂₆H₃₂O₁₄Na; 591.1690). 1 H-(400 MHz, CD₃OD) and 1 3C-NMR (100 MHz, CD₃OD): Tables 1 and 2.

Demethyl 10-acetoxyisoligustroside (2) 無晶形 粉末. $[a]_D^{25}-151.0^{\circ}(c=0.12, \text{MeOH})$. UV λ_{max} (MeOH) nm (log ε): 201 (4.2), 224 (4.2), 276 (3.3). FAB-MS $\frac{n}{z}$: 591 [M+Na]+. HR-FAB-MS $\frac{n}{z}$: 591.1686 ([M+Na]+, Calcd for C₂₆H₃₂O₁₄Na; 591.1690). 1 H-(400 MHz, CD₃OD) and 13 C-NMR (100 MHz, CD₃OD): Tables 1 and 2.

化合物 1,2 の糖部の絶対構造 化合物 1,2 (ca. 0.5 mg) を各々5% HCl (5 ml) に溶かし,水浴上で

2時間還流. 冷後, Ag_2CO_3 を加え中和し, ろ過. ろ液を旋光度検出器 [OR-2090, 日本分光] を用いた HPLC $[column, TSK gel Amide-80 (7.8 mm i.d.×30 cm, Tosoh); mobile phase, <math>CH_3CN-H_2O$ (4:1); flow rate, 1.0 ml/min; UV detector, 205 nm; column temperature, 40 \mathbb{C} [C] に付して標品との比較により, それぞれ D-glucose を確認した.

謝辞 本研究にあたり、NMR 及び Mass スペクトルを測定していただいた本学中央機器室、佐藤真一、松木智之両氏に深謝いたします。

REFERENCES

1) Machida K., Sakamoto S., Kikuchi M., *J. Nat. Med.*, **63**, 227 – 231 (2009).

- Sakamoto S., Machida K., Kikuchi M., Heterocycles, 74, 937 – 941 (2007).
- 3) Sakamoto S., Machida K., Kikuchi M., *J. Tohoku Pharmaceutical University*, **54**, 63-67 (2007).
- 4) Sakamoto S., Machida K., Kikuchi M., *J. Nat. Med.*, **62**, 362 363 (2008).
- 5) Machida K., Sakamoto S., Kikuchi M., *Magn. Reson. Chem.*, **46**, 990 994 (2008).
- 6) Sakamoto S., Machida K., Kikuchi M., *Heterocycles*, **77**, 557 563 (2009).
- 7) Kikuchi M., Yakugaku Zasshi, **104**, 535 539 (1984).
- 8) Kikuchi M., Yamauchi Y., *Yakugaku Zasshi*, **105**, 411–414 (1985).
- 9) Kikuchi M., Yamauchi Y., Yanase C., Nagaoka I., Yakugaku Zasshi, 107, 245 – 248 (1987).