原 著

モクセイ科植物の成分研究(第 22 報¹⁾)キンモクセイの葉の 新規セコイリドイド配糖体について

町田 浩一, 山内 恵, 菊地 正雄

Studies on the Constituents of *Osmanthus* Species. XXII. Two New Secoiridoid Glycosides from the Leaves of *Osmanthus fragrans* LOUR. var. *aurantiacus* MAKINO

Koichi MACHIDA, Megumi YAMAUCHI, and Masao KIKUCHI

(Received November 20, 2009)

Two new secoiridoid glycosides, named demethyl 10-acetoxyligustroside (1) and demethyl 10-acetoxyisoligustroside (2), were isolated from the leaves of *Osmanthus fragrans* LOUR. var. *aurantiacus* MAKINO. Their structures were established on the basis of NMR, MS and chemical data. The NMR spectral features of these compounds are almost superimposable, however, 1 and 2 can be distinguished by the chemical shifts of the H-3, C-3 and C-4 in their NMR spectra.

Key words ---- Osmanthus fragrans; Oleaceae; secoiridoid glycoside

著者らは、モクセイ科植物の成分研究の一環とし て、ヒイラギ Osmanthus ilicifolius の葉から、2種の 新規 oleoside タイプセコイリドイド二量体、5種の 新規 oleoside タイプセコイリドイド二配糖体及び6 種の新規ネオリグナン配糖体を含む 30種の化合物 を単離し、それらの化学構造について報告した.¹⁻⁶⁾ 本論文では、同属植物のキンモクセイ O. fragrans LOUR. var. aurantiacus MAKINO の葉から 2種の新規 セコイリドイド配糖体を単離することができたの で、これらの化学構造について報告する.なお、キ ンモクセイの葉の化学成分については、既に著者ら により 3種の新規アシル化配糖体を含む 24種の化 合物が報告されている.⁷⁸⁾ 化合物 1 は、比旋光度 – 175.1°の無晶形粉末とし て得られ、高分解能(HR)-FAB-MS より分子式は $C_{26}H_{32}O_{14}$ と決定された.化合物 1 の¹H-NMR スペ クトルでは、パラ2 置換ベンゼンプロトン [$\delta_{\rm H}$ 6.71 (2H, d, J=8.5 Hz, H-3″, H-5″), 7.05 (2H, d, J=8.5 Hz, H-2″, H-6″)]、2 組の3 置換オレフィンプロトン [$\delta_{\rm H}$ 7.52 (1H, s, H-3), 6.08 (1H, br t, J=6.3 Hz, H-8)], 1 個のアセタールプロトン [$\delta_{\rm H}$ 5.97 (1H, br s, H-1)], 1 個のアノメリックプロトン [$\delta_{\rm H}$ 4.82 (1H, d, J=7.8 Hz, H-1′)]、5 組のメチレンプロトン [$\delta_{\rm H}$ 4.58 (1H, ddd, J=13.2, 6.3, 1.5 Hz, H-10_A), 4.76 (1H, br dd, J= 13.2, 8.1 Hz, H-10_B), $\delta_{\rm H}$ 4.13 (1H, dt, J=10.7, 7.1 Hz, H- $a_{\rm A}$), 4.24 (1H, dt, J=10.7, 7.1 Hz, H- $a_{\rm B}$), $\delta_{\rm H}$ 3.67

Fig. 1. Structures of Compounds 1 and 2

Fig. 2. Main HMBC Correlations Heavy lines indicated partial structures inferred from ¹H-¹H COSY.

 $(1H, dd, J=12.0, 5.9 Hz, H-6'_A), 3.89(1H, dd, J=12.0,$ 1.7 Hz, H-6'_B), $\delta_{\rm H}$ 2.82 (2H, br t, J = 7.1 Hz, H₂- β), $\delta_{\rm H}$ $2.49(1H, dd, J=15.1, 10.0 Hz, H-6_A), 2.81(1H, dd, J=$ 15.1, 3.7 Hz, H-6_B)], 1 個のメチンプロトン $[\delta_{\rm H} 3.99$ (1H, dd, J=10.0, 3.7 Hz, H-5)]及び1個のアセチル 基のプロトン [$\delta_{\rm H}$ 2.01 (3H, s, 10-OCOCH₃)] シグナ ルが観察された.¹³C-NMR スペクトルでは、その化 学シフト値より β-glucopyranose の存在が確認され た. また,酸加水分解により D-glucose が得られた. これらのデータは、既に本植物から報告されている 10-acetoxyligustroside⁷⁾とよく類似しているが、そ の11位カルボメトキシプロトン及びカーボンシグ ナルが消失していることから, 化合物1の11位は カルボキシル基と推定される. そこで¹H-¹H shift correlation spectroscopy (¹H-¹H COSY) によりプロ トンの連結性, さらに¹H-detected heteronuclear multiple bond correlation (HMBC) スペクトルによ りプロトンとカーボンの遠隔カップリングをそれ ぞれ確認したところ, Fig.2に示す相関が確認され た. 以上のことから, 化合物 1 は demethyl 10acetoxyligustroside と決定した.

化合物 **2**は、比旋光度 – 151.0°の無晶形粉末とし て得られ、HR-FAB-MS より分子式は化合物 **1** と同 じ C₂₆H₃₂O₁₄ と決定された.化合物 **2**の NMR スペ クトルは、**1** と非常によく類似しているが、3 位プロ トン [$\delta_{\rm H}$ 7.43 (1H, s)]、3 位カーボン [$\delta_{\rm C}$ 153.2]、4 位カーボン [$\delta_{\rm C}$ ca. 112.9] シグナルにシフトが観察 された.以上のことから、化合物 **2**は、**1**の7位に 結合していた p-hydroxyphenethyl alcohol が 11 位 カルボキシル基にエステル結合、すなわち、ムラサ キハシドイ葉より報告されている isoligustroside⁹ の7位 demethyl 体と推定された.¹H-¹H COSY 及 び HMBC スペクトルでは, Fig. 2 に示す相関が確認 された.以上のスペクトルデータから, 化合物 **2** は, demethyl 10-acetylisoligustroside と決定した.

実験の部

旋光度は日本分光 DIP-360 型, UV スペクトルは Beckman DU-64 型を使用し測定した. FAB-MS は 日本電子 JMS-DX 303 型を使用し, FAB-MS のマト リックスにはグリセリンを用い測定した. ¹H-及び ¹³C-NMR スペクトルは,日本電子 JMN-GSX 400 型 (¹H: 400 MHz, ¹³C: 100 MHz)を使用し,内部標準物 質に tetramethylsilane を用いて測定した. 化学シフ トは δ 値 (ppm)で示し,結合定数 (*J*) は Hz で表 した (略語:s=singlet, d=doublet, t=triplet, dd= double doublet, ddd=double double doublet, m= multiplet, br=broad). カラムクロマトグラフィー には,Kieselgel 60 (Merck, 230 – 400 mesh), Sephadex LH-20 (Pharmacia)を使用した.分取高 速液体クロマトグラフィー (prep. HPLC) には Tosoh HPLC System を使用した.

分離 仙台市内で採集したキンモクセイの新鮮 葉 1.35 kg を MeOH で室温抽出し,得られた MeOH エキス (195 g) を CHCl₃, AcOEt, *n*-BuOH, H₂O 各可 溶部に分画した. *n*-BuOH 可溶部をシリカゲルカラ ムクロマトグラフィー (CHCl₃-MeOH-H₂O 混液) に 付し4 分画した (frs. 1-4). Fr. 3 を Sephadex LH-20 カラムクロマトグラフィー[MeOH-H₂O(1:1)]に 付して 13 分画し (frs. 3-1-3-13), Fr. 3-6 を prep. HPLC で精製[column, TSK gel ODS-120T (7.8 mm

Position	1 multiplicity (<i>J</i> , Hz)	2 multiplicity (<i>J</i> , Hz)
1	5.97 br s	5.93 br s
3	7.52 s	7.43 s
5	3.99 dd (10.0, 3.7)	4.01 dd (10.0, 3.9)
6	2.49 dd (15.1, 10.0)	2.46 dd (15.1, 10.0)
	2.81 dd (15.1, 3.7)	2.87 dd (15.1, 3.9)
8	6.08 br t (6.3)	6.06 br t (6.3)
10	4.58 ddd (13.2, 6.3, 1.5)	4.62 ddd (13.4, 6.3, 1.7)
	4.76 br dd (13.2, 8.1)	4.77 dd (13.4, 8.3)
10-OCOCH ₃	2.01 s	2.01 s
1′	4.82 d (7.8)	4.82 d (7.8)
2'	3.39, overlapped	3.39, overlapped
3′	3.39, overlapped	3.39, overlapped
4'	3.39, overlapped	3.39, overlapped
5′	3.39, overlapped	3.39, overlapped
6′	3.67 dd (12.0, 5.9)	3.67 dd (12.0, 5.6)
	3.89 dd (12.0, 1.7)	3.88 dd (12.0, 1.7)
α	4.13 dt (10.7, 7.1)	4.12 dt (10.7, 7.0)
	4.24 dt (10.7, 7.1)	4.23 dt (10.7, 7.0)
eta	2.82 br t (7.1)	2.82 br t (7.0)
2", 6"	7.05 d (8.5)	7.05 d (8.5)
3″, 5″	6.71 d (8.5)	6.71 d (8.5)

Table 1. ¹H-NMR Data for Compounds **1** and **2** (400 MHz, CD₃OD)

Table 2. ¹³C-NMR Data for Compounds **1** and **2**(100 MHz, CD₃OD)

Position	1	2
1	94.2	94.0
3	154.8	153.2
4	<i>ca</i> . 109.5 ^a	<i>ca.</i> 112.9 ^a
5	32.6	33.0
6	41.1	41.2
7	173.0	173.1
8	124.2	123.8
9	134.2	134.8
10	61.9	62.1
11	<i>ca</i> . 170.0 ª	<i>ca.</i> 170.6 ^a
$10-OCOCH_3$	172.6, 20.8	172.6, 20.8
1'	100.9	100.9
2'	74.8	74.8
3′	78.6	78.5
4'	71.5	71.5
5′	78.0	78.0
6′	62.8	62.8
α	67.0	66.9
β	35.2	35.2
1″	130.0	130.0
2", 6"	131.0	131.0
3″, 5″	116.4	116.3
4″	1571	157.1

^a Not detected directly, but the chemical shifts were obtained approximately from the HMBC spectra.

i.d.×30 cm, Tosoh); mobile phase, MeOH-H₂O (4:7, 4:11); flow rate, 1.0 ml/min; UV detector, 205 nm; column temperature, 40°C. column, Cosmosil 5SL(10 mm i.d.×25 cm, Nacalai); mobile phase, CH₂Cl₂-MeOH-H₂O (70:10:1); flow rate, 1.5 ml/min; UV detector, 225 nm; column temperature, room temperature] して, 化合物 1 (12.5 mg) 及び 2 (10.5 mg) を得た.

Demethyl 10-acetoxyligustroside (1) 無晶形粉 末, $[a]_D^{25} - 175.1^{\circ}(c = 0.26, MeOH)$. UV λ_{max} (MeOH) nm (log ε): 203 (4.1), 225 (4.3), 277 (3.3). FAB-MS m'_{z} : 591 [M+Na]⁺. HR-FAB-MS m'_{z} : 591.1686 ([M+Na]⁺, Calcd for C₂₆H₃₂O₁₄Na; 591.1690). ¹H-(400 MHz, CD₃OD) and ¹³C-NMR (100 MHz, CD₃OD): Tables 1 and 2.

Demethyl 10-acetoxyisoligustroside (2) 無晶形 粉末. $[a]_D^{25} - 151.0^{\circ}(c = 0.12, MeOH)$. UV λ_{max} (MeOH) nm (log ε): 201 (4.2), 224 (4.2), 276 (3.3). FAB-MS $\frac{m'_{z}}{2}$: 591 [M+Na]⁺. HR-FAB-MS $\frac{m'_{z}}{2}$: 591.1686 ([M+Na]⁺, Calcd for C₂₆H₃₂O₁₄Na; 591.1690). ¹H-(400 MHz, CD₃OD) and ¹³C-NMR (100 MHz, CD₃OD): Tables 1 and 2.

化合物 1,2の糖部の絶対構造 化合物 1,2(*ca.* 0.5 mg)を各々5% HCl(5 ml)に溶かし,水浴上で

2時間還流. 冷後, $Ag_2CO_3 を加え中和し, ろ過. ろ$ 液を旋光度検出器 [OR-2090, 日本分光] を用いたHPLC [column, TSK gel Amide-80 (7.8 mm i.d.×30 $cm, Tosoh); mobile phase, <math>CH_3CN-H_2O$ (4:1); flow rate, 1.0 ml/min; UV detector, 205 nm; column temperature, 40°C] に付して標品との比較により, それぞれ D-glucose を確認した.

謝辞 本研究にあたり,NMR 及び Mass スペ クトルを測定していただいた本学中央機器室,佐藤 真一,松木智之両氏に深謝いたします.

REFERENCES

 Machida K., Sakamoto S., Kikuchi M., J. Nat. Med., 63, 227 – 231 (2009).

- Sakamoto S., Machida K., Kikuchi M., *Heterocycles*, 74, 937-941 (2007).
- Sakamoto S., Machida K., Kikuchi M., J. Tohoku Pharmaceutical University, 54, 63-67 (2007).
- 4) Sakamoto S., Machida K., Kikuchi M., J. Nat. Med., 62, 362-363 (2008).
- 5) Machida K., Sakamoto S., Kikuchi M., *Magn. Reson. Chem.*, **46**, 990-994 (2008).
- 6) Sakamoto S., Machida K., Kikuchi M., *Heterocycles*, 77, 557-563 (2009).
- 7) Kikuchi M., Yakugaku Zasshi, 104, 535-539 (1984).
- 8) Kikuchi M., Yamauchi Y., Yakugaku Zasshi, 105, 411-414 (1985).
- 9) Kikuchi M., Yamauchi Y., Yanase C., Nagaoka I., *Yakugaku Zasshi*, **107**, 245-248 (1987).