キク科植物のセスキテルペノイドの分子構造解析学的研究

菊地 正雄,八百板康範

Molecular Structural Analysis of Sesquiterpenoids from Plants of the Family Compositae

Masao KIKUCHI and Yasunori YAOITA

(Received November 20, 2009)

はじめに

セスキテルペノイドは、イソプレン単位3個より 構成された炭素数15個のテルペノイドであり, farnesvl diphosphate (FPP) を前駆体として生合成さ れる天然物である. テルペノイドのなかでも構造の 多様性に富み, FPPの閉環によって生じるカルボカ チオンを経て、分子内二重結合の攻撃による閉環反 応や隣接位の水素原子の移動, Wagner-Meerwein 転位などを伴って様々な環骨格へと誘導される.1) セスキテルペノイドは,植物,昆虫,菌類,海洋生 物など広い範囲に存在しており、生物活性をもつ ものが多い. 例えば、回虫駆除薬の a-santonin,²⁾抗 腫瘍活性を有する vernolepin, ³⁾ 抗胃潰瘍作用や肝 障害抑制作用を有する β-eudesmol⁴⁾ などが知られ ている (Fig. 1). また, 香料の原料としても重要で あり、その一例として、グレープフルーツ (Citrus paradist) の精油から得られる nootkatone などが知 られている (Fig. 1). ⁵⁾

このように、セスキテルペノイドは生物活性の面 から興味が持たれる化合物であるが、これらは構造 が類似していることから、その分離、精製が困難で あったため詳細な検討がなされていなかった.この ような観点から著者らは、近年発達してきた最新の

Fig. 1. Structures of Representative Sesquiterpenoids

分離分析法や二次元 NMR 法を中心とした各種ス ペクトル分析法を駆使することにより,主にキク科 植物から多数の新規セスキテルペノイドを単離し, それらの化学構造を明らかにしてきた.本稿では, 著者らがこれまでに行ってきた新規セスキテルペ ノイドの分子構造解析学的研究について,Fig.2に 示す環骨格に分類される化合物を中心に,それらの 化学構造上の特徴について概説する.

1) Eremophilane 型セスキテルペノイド

フキ (Petasites japonicus MAXIM.) は日本, 朝鮮 及び中国の山野,路傍に広く分布するキク科 (Compositae)の多年生草本である. フキノトウと称 される花茎は食用に供されており、また、根茎は中 国において蜂斗菜(ホウトサイ)と称し,扁桃炎,打 撲傷及び毒蛇による咬傷の治療に用いられる.著者 らは、フキノトウの精油成分に関する研究 6-9) を契 機として,引き続きフキの根茎のセスキテルペノイ ド成分について検討を行った.10-12)その結果、 eremophilane 型セスキテルペノイドに分類される 6β -angeloyloxy- 3β , 8β -dihydroxyeremophil-7(11)en-12,8*a*-olide (1) 及び 6*β*-angeloyloxy-3*β*,8*a*dihydroxyeremophil-7(11)-en-12,8β-olide (2) をアセ チル化体(1a 及び 2a)として単離することができた (Fig. 3).¹³⁾ これらは eremophilane 骨格の8位及び 12 位間で a, β-不飽和-γ-ラクトン環を形成した化合 物であり、一般に eremophilenolide と称される.こ の eremophilenolide の化学構造上の特徴は、8 位の 置換基の立体配置によって A 環及び B 環で示され る cis-デカリン部分の立体配座が大きく変化する点 である. すなわち, 8位の置換基が β 配置のとき cis-デカリン環は steroidal conformation をとり、 a 配 置のときは non-steroidal conformation をとるとい うものである. Nayaらは,絶対構造既知の 8βmethoxyeremophilenolide 誘導体及びその8位のエ

Fig. 2. Carbon Skeletons of Sesquiterpenoids

Fig. 3. Structures of Compounds 1 - 10

ピマーの立体構造とスペクトルの関連性について 報告しており,^{14,15)}これは eremophilenolide 誘導体 の構造決定に利用されている.すなわち,¹H-NMR スペクトルにおいて 8β-methoxy 体の 14 位の二級 メチル基は,15 位の三級メチル基のそれよりも高磁 場にシフトし, 8*a*-methoxy 体においてこの関係は 逆になる. 8*a*-Methoxy 体は, 13 位のメチル基と 6*a* 位の水素との間にホモアリルカップリング (J= 1.0-1.8 Hz) が認められるが, 8*β*-methoxy 体では認 められない. 8*β*-Methoxy 体の比旋光度の符号はプ

Fig. 4. Conformation and NOEs (Full-Line Arrows) of Compounds 1a and 2a

ラスを示し、8*a*-methoxy体はマイナスを示す、というものである.これらを適用すると化合物 1a は steroidal conformation をとり、化合物 2a は non-steroidal conformation をとることが明らかとなった (Fig. 4). このことは、nuclear Overhauser effect correlation spectroscopy (NOESY) スペクトルにおいて、各々の立体配座に特徴的な nuclear Overhauser effect (NOE)が観察されることからも支持される (Fig. 4).

更に、フキの根茎からは 6β-epoxyangeloyloxy- 3β -hydroxyeremophil-7(11)-en-12,8 β -olide (3) \approx 6β-(3'-chloro-2'-hydroxy-2'-methylbutyloxy)-3βhydroxyeremophil-7(11)-en-12,8β-olide (4) のように アシル基として epoxyangeloyl 基, 3'-chloro-2'hydroxy-2'-methylbutyryl 基を有する化合物を単離 することができた (Fig. 3).¹⁶⁾このうち, 化合物4は 分子内に塩素を有しているが、これは電子イオン化 (EI)-MSにおける分子イオンピークの強度比よりそ の存在が明らかとなった.また、9位に水酸基を有す $\gtrsim 6\beta$ -angeloyloxy- 3β , 8β , 9β -trihydroxyeremophil-7(11)-en-12,8 α -olide (5) 及び 6 β -angeloyloxy-3 β ,9 α dihydroxyeremophil-7(11)-en-12,8 β -olide (**6**), ¹⁶⁾ 3位にカルボニル基を有する 6β-angeloyloxy-3oxoeremophil-7(11)-en-12,8a-olide (7) 及び 6 β angeloyloxy-8β-hydroxy-3-oxoeremophil-7(11)-en-12.8a-olide (8) ^{17,18)} を単離し、それらの化学構造を 決定した (Fig. 3). 一方, 3 位及び6 位にアシル基を 有する 3β,6β-diangeloyloxyeremophil-7(11)-en-12,8βolide (9) ¹³⁾ 及び 6 β -angeloyloxy-3 β -[(R, E)-3"methylsulphinylacryloyloxy]-eremophil-7(11)-en-12,8β-olide (10)¹⁹⁾を得ることができた (Fig. 3). こ のうち、 化合物 **10** は (*R*,*E*)-3-methylsulphinylacryloyl

基を有する eremophilenolide 誘導体の最初の例で あり、そのスルフィニル基の絶対配置は円二色性 (CD) スペクトルにより決定した.²⁰⁾

著者らは、フキの根茎の成分について更に詳細な 検討を行った.その結果,分子内に五員環へミアセ タールを有する (15*R*)-6 β -angeloyloxy-3 β ,15-epoxy- 9β ,15-dihydroxyeremophil-7(11)-en-12,8*a*-olide (**11**), ²¹⁾ eremophilane 骨格の8位及び9位間の結合が開裂 した secoeremophilane 型セスキテルペノイドの $(6S^*)$ -6-angeloyloxy-3 β ,12 ξ -dihydroxy-9-nor-10-oxo-8,9-secoeremophil-7(11)-en-8,12-olide (12) 及び (6S*, $9S^*$)-6-angeloyloxy-3 β ,9-epoxy-12 ξ -hydroxy-9methoxy-8,9-secoeremophil-7(11)-en-8,12-olide, ²²⁾ eremophilenolide の a, β-不飽和-γ-ラクトン環が開裂 した 3 β -hydroxy-8-oxoeremophil-6-en-12-oic acid methyl ester (14)¹⁶⁾ など、多彩な骨格構造を有する 化合物の存在を明らかにすることができた(Fig. 5). また, eremophilane 骨格の炭素数が1個減少したノ ルセスキテルペノイドである eremopetasidione(15), 2個減少したジノルセスキテルペノイドである eremopetasinorol (16), epoxyeremopetasinorol (17), eremopetasinorone A (18) 及び eremopetasinorone B(19)を単離し、それらの化学構造を決定した (Fig. 5).^{19,23)} このうち, 化合物 15 については Liao らにより全合成が行われ、その立体化学構造が確認 された.24,25) また, 化合物 18 及び 19 は互いに 12 位 の二級メチル基に関するエピマーの関係にあるが, 両者の NOE 差スペクトルを検討したところ、シク ロヘキサノン環の立体配座が反転していることが 確認された(Fig. 6). これらの化合物の絶対構造に ついては、分子内に六員環ケトンを有していること から CD スペクトルにおけるオクタント則²⁶⁾を適

用した. すなわち, 化合物 **18** は 290.5 nm に 3 位のカ ルボニル基に由来する負のコットン効果 ($\Delta \epsilon$:-6.08) が認められ, また, 化合物 **19** は 292.5 nm に正のコッ トン効果 ($\Delta \epsilon$:+0.55) が認められることから, それら の絶対構造が明らかとなった.¹⁹⁾ 一方, 化合物 **16** 及 び 17 については、16 をメタノール中 H_2O_2 -NaOH で処理することにより 17 が得られたこと、並びに、 16 を *n*-ヘキサン中 pyridinium chlorochromate (PCC) – Al_2O_3 で処理することにより 18 が得られた ことから、それらの絶対構造が確定された (Fig. 7).¹⁹⁾

Fig. 5. Structures of Compounds 11-19

Fig. 6. NOEs (Full-Line Arrows) Detected for Compounds 18 and 19

Fig. 7. Chemical Correlations of Compound 16 to Compounds 17 and 18

2) Oplopane 型セスキテルペノイド

フキタンポポ(Tussilago farfara L.)は中国,シベ リア,インドの西ヒマラヤ,カシミールからクマオン 及びアフリカ北部などに自生するキク科の多年生草 本である.本植物の未開の花頭を乾燥したものを款 冬花 (カントウカ) と称し、中国やヨーロッパにおい ては古くから鎮咳、 去痰の目的で用いられる、 著者ら は、款冬花の化学成分について検討を行い、27-29) oplopane 型セスキテルペノイド³⁰⁾の14(*R*)-hydroxy-7 β -isovaleroyloxyoplop-8(10)-en-2-one (20) を単離し, その化学構造を明らかにした (Fig. 8).³¹⁾また、Δ³⁽¹⁴⁾ 構造を有する 7β-seneciovloxyoplopa-3(14)Z,8(10)dien-2-one (21), 7β -(4-methylsene-cioyloxy) oplopa-3(14)*E*,8(10)-dien-2-one (**22**) 及び1a,7β-di(4methylsenecioyloxy) oplopa-3(14)Z,8(10)-dien-2-one (23) を得ることができた (Fig. 8).³²⁾ これらの化合 物の幾何異性体の区別には^{IH-NMR} スペクトルが 用いられる.³³⁾更に, tussilagolactone (24) と命名 した分子内に δ-ラクトン環を有する化合物を見い だし、その構造を決定した(Fig. 8).³⁴⁾

3) Bisabolane 型セスキテルペノイド

著者らは、款冬花のセスキテルペノイド成分について更に検討を行った。その結果、bisabolane型セスキテルペノイドの(1*R*,3*R*,4*R*,5*S*,6*S*)-1-acetoxy-8angeloyloxy-3,4-epoxy-5-hydroxybisabola-7(14),10dien-2-one (**25**)を単離し、その化学構造を明らかに することができた(Fig. 9).³¹⁾本化合物のアセチル 化体(**26**)は Ryu らにより款冬花の成分として報告 されているが、³⁵⁾シクロヘキサノン環上の置換基の 絶対配置が未決定であった. そこで, 化合物 25 を無 水酢酸-ピリジンにより化合物 26 へと導き, 各種 スペクトルデータ並びに比旋光度を文献値と比較す ることによりその絶対構造を決定した.³¹⁾

次に、著者らはキク科植物のセスキテルペノイド 成分研究の一環として、36-40)メタカラコウ (Ligularia) 属の植物であるマルバダケブキ(L. dentata HARA)の根について検討を行った.⁴¹⁾その 結果, (1R,2R,3S,5S,6R)-2,8-diangeloyloxy-1,3,5trihydroxybisabola-7(14),10-dien-4-one (27), (1*R*,2*R*,3*S*,5*S*,6*R*)-5-acetoxy-2,8-diangeloyloxy-1,3dihydroxybisabola-7(14),10-dien-4-one (**28**), (4R,6E)-2-acetoxy-8-angeloyloxy-4-hydroxybisabola-2,6,10trien-1-one (**29**), 1*a*,8-diangeloyloxy-5*a*,10-dihydroxy- 2β , 3β -epoxy-11-methoxybisabol-7(14)-4-one (**30**) 及び 1a,3β-dihydroxy-10,11-epoxy-2a,5a,8triangeloyloxybisabol-7(14)-en-4-one (31) を単離す ることができた (Fig. 9). ⁴²⁻⁴⁴⁾ また, bisabolane 骨 格の側鎖部分において環構造を形成している (1*R*,5*S*,6*S*,8*R*)-1,10-diangeloyloxy-5,8-epoxy-11hydroxy-6-methoxybisabola-2,7(14)-dien-4-one (**32**), 8a-angeloyloxy- 7β , 10β -epoxy-11-methoxybisabola-1,3,5-triene-4,5-diol (**33**), 8β-angeloyloxy-5,10βepoxybisabola-1,3,5,7(14)-tetraene-2,4,11-triol (34) 及 \mathcal{U} 8 β -angeloyloxy-5,10 β -epoxythiazolo[5,4-a]bisabola-1,3,5,7(14)-tetraene-4,11-diol (35) を単離し、それら の化学構造を明らかにした (Fig. 9). 42.43) このうち, 化合物 34 及び 35 はベンゼン環と含酸素七員環が 融合した bisabolane 型セスキテルペノイドであり, 天然から本骨格を有する化合物の単離例は少なく,

Fig. 8. Structures of Compounds 20-24

Fig. 9. Structures of Compounds 25-35

Fig. 10. Selected *J*-Values (Dotted-Line Arrows) and NOEs (Full-Line Arrows) in Compound **34**

Macias らによりキク科, ヒマワリ (*Helianthus*) 属 の植物であるヒマワリ (*H. annuus* L.) の葉から heliannuol 類として報告されているのみである.^{45,46} 化合物 **34** の立体構造については以下のように検討 した. すなわち,¹H-NMR スペクトルにおいて 8a 位 の水素と9位のメチレン基の水素との間の結合定 数が 4.8 Hz であり, 9a 位の水素と 10β 位の水素と の間の結合定数が 10.6 Hz であった. また, 9β 位の 水素と10β位の水素との間の結合定数は2.6 Hz で あり、更に、NOESY スペクトルにおいて 8a 位の水 素と14b位の水素との間に相関が認められた.これ より,本化合物の含酸素七員環部分はいす形配座を とり、8 位の angeloyloxyl 基は β 配置を、10 位の 2hydroxyisopropyl 基は a 配置をとることが判明し た (Fig. 10). 化合物 35 は分子内にベンゾチアゾー ル環を有している新規性の高い構造であるが、これ までにベンゾチアゾールを有する天然物は海洋生 物から数例の報告があるのみで、47-50)植物成分とし て確認されたことは非常に珍しい.本化合物は Fig. 11 に示すように、化合物 34 を前駆体として、アミ ノ酸のシステインとの反応により生じた1.4-ベンゾ チアジン中間体の環縮小反応,アルデヒド基の酸化 並びに酸化的脱炭酸反応を経て生合成されるもの と推定される. 51,52)

Eudesmane 型, Oppositane 型, Isodaucane 型
 並びに Cadinane 型セスキテルペノイド

著者らは、マルバダケブキの根から1B位と14位

Fig. 11. Possible Pathway for Compound 35 from Compound 34

Fig. 12. Structures of Compounds 36-43

に水酸基を有する eudesmane 型セスキテルペノイ ドの eudesma-4,11-diene-1 β ,14-diol (**36**) ⁴³⁾並びにA 環が芳香環化されたノルセスキテルペノイドの liguladentanorol (**37**) ⁵³⁾を単離し,それらの化学構 造を決定した (Fig. 12). このうち,化合物 **37** はマ ルバダケブキに特徴的な成分であり,その生合成に は eudesmane 型セスキテルペノイドが前駆体とし て関与していることが推定される.⁵⁴⁾

一方, キク科, ムカシヨモギ (*Erigeron*) 属の植 物であるハルジオン (*E. philadelphicus* L.)の成分に ついて検討したところ, ⁵⁵⁻⁵⁷⁾ 6 位及び 14 位間でエポ キシ環を形成している 6β ,14-epoxyeudesm-4(15)-en-1 β -ol (**37**) を得ることができた (Fig. 12). ⁵⁸⁾ また, キク科, ヒマワリ属の植物であるキクイモ (*H.* *tuberosus* L.) の葉から 1*a*-acetoxypinnatifidin (**38**) が単離された (Fig. 12).⁵⁹⁾ 本化合物は既に合成品と して報告されているが, ⁶⁰⁾ 植物成分として見いださ れたのは初めてである.

更に、ムカシヨモギ属植物のセスキテルペノイド 成分について再度検討を行い、ヒメジョオン(*E. annuus* L. PERS.)から oppositane 型セスキテルペノ イドの(7*R**)-opposit-4(15)-ene-1 β ,7-diol(40)及び 11-methoxyopposit-4(15)-en-1 β -ol(41), isodaucane 型セスキテルペノイドの15-methoxyisodauc-3-ene-1 β ,5*a*-diol(42)並びに cadinane 型セスキテルペノイ ドの10*a*-hydroxycadin-4-en-15-al(43)を単離し、そ れらの化学構造を明らかにした.⁵⁸⁾

おわりに

本稿では、著者らがこれまでに行ってきたキク科 植物由来の新規セスキテルペノイドの分子構造研 究について概説した.セスキテルペノイドは植物を はじめ、昆虫、菌類、海洋生物など広い範囲にわたっ て存在しており、また、その化学構造も多様性に富 んでいる.更に、種々の生物活性を示すものも多い ことから、今後、人類にとって有用な化合物が探索 され、その分子構造が解明されることにより、それ が創薬の源流となることを期待する.

REFERENCES

- Morita H., "Chemistry of Organic Natural Products," Chap. 4, eds. by Ebizuka Y., Morita H., Nankodo, Tokyo, 2007, pp. 145 – 154.
- 2) Abe Y., Kagaku no Ryoiki, 10, 315-326 (1956).
- 3) Kupchan S. M., Hemingway R. J., Werner D., Karim A., McPhail A. T., Sim G. A., *J. Am. Chem. Soc.*, 90, 3596-3597 (1968).
- McQuillin F. J., Parrack J. D., J. Chem. Soc., 2973-2978 (1956).
- 5) MacLeod W. D., Tetrahedron Lett., 4779-4783 (1965).
- Kurihara T., Kikuchi M., Yakugaku Zasshi, 91, 775-778 (1971).
- 7) Kurihara T., Kikuchi M., Yakugaku Zasshi, 92, 210-212 (1972).
- 8) Kurihara T., Kikuchi M., Yakugaku Zasshi, 92, 635-638 (1972).
- 9) Kikuchi M., Yakugaku Zasshi, 93, 123-126 (1973).
- 10) Yaoita Y., Kikuchi M., *Tohoku Yakka Daigaku Kenkyu Nempo*, **40**, 111-114 (1993).
- Yaoita Y., Kikuchi M., *Phytochemisty*, **37**, 1773-1774 (1994).
- 12) Yaoita Y., Kikuchi M., *Tohoku Yakka Daigaku Kenkyu Nempo*, **45**, 123-126 (1998).
- Yaoita Y., Nagata K., Suzuki N., Kikuchi M., Chem. Pharm. Bull., 40, 3277 – 3279 (1992).
- 14) Naya K., Nogi N., Makiyama Y., Takashina H., Imagawa T., *Bull. Chem. Soc. Jpn.*, **50**, 3002-3006 (1977).
- Naya K., Shimizu M., Nishio H., Takeda M., Oka S., Hirota K., *Bull. Chem. Soc. Jpn.*, **64**, 1071 – 1080 (1991).

- Yaoita Y., Kikuchi M., Chem. Pharm. Bull., 43, 1738-1743 (1995).
- 17) Yaoita Y., Kikuchi M., Chem. Pharm. Bull., 42, 1944-1947 (1994).
- 18) Yaoita Y., Kikuchi M., Natural Medicines, 51, 372-375 (1997).
- 19) Yaoita Y., Kikuchi M., Chem. Pharm. Bull., 44, 1731-1735 (1996).
- 20) Ikegami F., Sekine T., Duangteraprecha S., Matsushita N., Matsuda N., Ruangrungsi N., Murakoshi I., *Phytochemistry*, **28**, 881-882 (1989).
- Yaoita Y., Kikuchi M., Natural Medicines, 50, 49-53 (1996).
- 22) Yaoita Y., Kikuchi M., *Phytochemistry*, 42, 751-755 (1996).
- 23) Yaoita Y., Kikuchi M., Phytochemistry, 37, 1765-1766 (1994).
- 24) Hsu D., Hsu P., Liao C., Org. Lett., **3**, 263 265 (2001).
- 25) Hsu D., Hsu P., Lee Y., Liao C., J. Org. Chem., 73, 2554-2563 (2008).
- 26) Moffitt W., Woodward R. B., Moscowitz A., Klyne W., Djerassi C., J. Am. Chem. Soc., 83, 4013 – 4018(1961).
- 27) Suzuki N., Kikuchi M., Yakugaku Zasshi, 112, 571-576 (1992).
- 28) Kikuchi M., Mori M., Tohoku Yakka Daigaku Kenkyu Nempo, **39**, 69-73 (1992).
- 29) Yaoita Y., Kikuchi M., Natural Medicines, **52**, 273-275 (1998).
- Takeda K., Minato H., Ishikawa M., *Tetrahedron*, Supplement No. 7, 219-225 (1966).
- 31) Yaoita Y., Suzuki N., Kikuchi M., *Chem. Pharm. Bull.*,49, 645-648 (2001).
- 32) Yaoita Y., Kamazawa H., Kikuchi M., Chem. Pharm. Bull., 47, 705-707 (1999).
- 33) Aal A. M., Bohlmann F., Sarg T., El-Domiaty M., Nordenstam B., *Phytochemistry*, 27, 2599-2602 (1988).
- 34) Kikuchi M., Suzuki N., Chem. Pharm. Bull., 40, 2753-2755 (1992).
- 35) Ryu J., Jeong Y. S., Sohn D. H., J. Nat. Prod., 62, 1437-1438 (1999).
- 36) Toyoda K., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull.*,
 53, 1555 1558 (2005).
- 37) Toyoda K., Yaoita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 52, 27-32 (2005).

- 38) Toyoda K., Yaoita Y., Kikuchi M., J. Nat. Med., 60, 329-330 (2006).
- 39) Toyoda K., Yoaita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 53, 43-50 (2006).
- Toyoda K., Yaoita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 53, 51-55 (2006).
- 41) Baba H., Yaoita Y., Kikuchi M., J. Nat. Med., 61, 472-473 (2007).
- 42) Baba H., Yaoita Y., Kikuchi M., *Helv. Chim. Acta*, 90, 1028-1037 (2007).
- 43) Baba H., Yaoita Y., Kikuchi M., *Helv. Chim. Acta*, 90, 1302-1312 (2007).
- 44) Baba H., Yaoita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 55, 47-50 (2008).
- 45) Macias F. A., Molinillo J. M. G., Varela R. M., Torres A., J. Org. Chem., 59, 8261 – 8266 (1994).
- 46) Macias F. A., Varela R. M., Torres A., Molinillo J. M.
 G., J. Nat. Prod., 62, 1636 1639 (1999).
- 47) Gunawardana G. P., Kohmoto S., Gunasekera S. P., McConnell O. J., Koehn F. E., *J. Am. Chem. Soc.*, **110**, 4856 – 4858 (1988).
- 48) Carroll A. R., Scheuer P. J., J. Org. Chem., 55, 4426-4431 (1990).
- 49) Stierle A. A., Cardellina II J. H., Tetrahedron Lett.,

32, 4847 – 4848 (1991).

- 50) Chill L., Rudi A., Benayahu Y., Kashman Y., *Tetrahedron Lett.*, **45**, 7925-7928 (2004).
- Napolitano A., Memoli S., Prota G., J. Org. Chem., 64, 3009-3011 (1999).
- 52) Donato P. D., Napolitano A., Prota G., Biochim. Biophys. Acta, 1571, 157-166 (2002).
- 53) Baba H., Yaoita Y., Kikuchi M., *J. Tohoku Pharmaceutical Univ.*, **54**, 53-56 (2007).
- 54) Dewick P. M., "Medicinal Natural Products: A Biosynthetic Approach, Second Edition," John Willey & Sons, New York, 2002, pp. 273-282.
- 55) Iijima T., Yaoita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 49, 71-77 (2002).
- 56) Iijima T., Yaoita Y., Kikuchi M., *Natural Medicines*, 57, 75 (2003).
- 57) Iijima T., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull.*,
 51, 894-896 (2003).
- 58) Iijima T., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull.*, 51, 545-549 (2003).
- 59) Baba H., Yaoita Y., Kikuchi M., J. Tohoku Pharmaceutical Univ., 52, 21-25 (2005).
- 60) Herz W., Kumar N., Phytochemistry, 20, 99-104 (1976).