フェニルエタノイド配糖体及び関連化合物の構造解析学的研究

菊地 正雄

Structural Analysis of Phenylethanoid Glycosides and Related Compounds

Masao Kikuchi

(Received November 20, 2009)

はじめに

フェニルエタノイドは、ベンゼン核 (C₆, phenyl) に炭素数2個からなる側鎖 (C₂, ethane) が結合し た C₆-C₂化合物の総称であり、L-フェニルアラニ ンあるいは L-チロシンのいずれかからフェニルプ ロピル単位 (C₆-C₃)を経由して生合成される (Fig. 1). ¹⁾フェニルエタノイドは、糖類と結合した 配糖体として天然に広く分布しており、その代表的 な例として acteoside ²⁾ や echinacoside ³⁾ が知られ ている (Fig. 2). これらの化合物には抗酸化作用, ⁴⁾ 抗炎症作用,⁵⁾肝保護作用 ⁶⁾など、種々の生物活性が 報告されている. また、最近、acteoside にアミロイ ド β タンパク質により誘発される細胞障害に対し て神経保護作用を有することが明らかとなり,アル ツハイマー病などの神経疾患の治療改善薬開発の ための素材として注目されている.⁷⁾

このように、フェニルエタノイド配糖体は生物活 性の面から興味がもたれる化合物であり、それらを 含有している植物より新規な分子構造を有する化 合物を探索することは、創薬の基本となるリード化 合物の検索の見地から重要であると考えられる.

以上の観点から著者らはこれまでに,新規のフェ ニルエタノイド配糖体を多くの植物から検索し,そ れらの分子構造解析に取り組んできた.本稿では, これまでに行ってきた分子構造解析学研究の中か ら,代表的な化合物についてその化学構造の特徴に

Fig. 1. Biosynthetic Pathway of $C_6 - C_2$ Unit

Fig. 2. Structures of Representative Phenylethanoid Glycosides

関して概説する.また、フェニルエタノイド配糖体 の関連化合物であるフェニルプロパノイド配糖体、 フェノール配糖体並びにポリアルコール配糖体に ついても紹介する.

1)フェニルエタノイド配糖体

モクセイ科 (Oleaceae) 植物は主として温帯及び 熱帯に分布する植物であり、その花冠、葉、果実 の形状からモクセイ属 (Osmanthus)、ハシドイ属 (Syringa)、イボタノキ属 (Ligustrum) などに分類 される、著者らは、モクセイ科、モクセイ属の植物 であるキンモクセイ (Osmanthus fragrans LOUR. var. aurantiacus MAKINO)の葉のフェニルエタノイ ド配糖体について検討を行い、acteoside⁸⁾ と共に osmanthuside A (1) 及び C (2) と命名した2種の 新規化合物を単離し、それらの化学構造を明らかに した (Fig. 3). 9.10) 化合物 1 は β -(p-hydroxyphenyl) ethyl β -D-glucopyranoside の 4"位に trans-p-coumaric acid がエステル結合しており、この結合位置につい ては円二色性(CD)スペクトルにおいて負の Cotton 効果が観察されたことから決定した.¹¹⁾また,化合 物2は1の *trans-p*-coumaroyl 基が *cis-p*-coumaroyl 基となった構造であるが,これは,¹H-NMR スペク トルにおいて 7 位及び 8 位間の結合定数が 12.6 Hz であることから明らかとなった.

次に著者らは、モクセイ科、ハシドイ属の植物で あるハシドイ [Syringa reticulata (BLUME) HARA] の葉の化学成分について検討を行った. その結果、 syringalide-A (**3**) 及び -B (**4**) と命名した新規化合 物を単離することができた (Fig. 3). ¹²⁾ 化合物 **3** 及 び**4**は**1**の3'位に、それぞれ、水酸基及びメトキシ 基を有する構造であることが判明した. また、ハシ ドイと同属の植物であるムラサキハシドイ (*S.* vulgaris L.)の葉からは、化合物**4**の3位に水酸基が 結合した syringalide-C(**5**)を得ることができた (Fig. 3). ¹³⁾ 一方、モクセイ科、イボタノキ属の植物 であるイボタノキ (*Ligustrum obtusifolium* SIEB. et Zucc.) の葉から、¹⁴⁾ neosyringalide (**6**) と命名した

Fig. 3. Structures of Compounds 1-11

OH.

新規配糖体を単離した (Fig. 3). ¹⁵⁾ 本化合物は 3,4 dihydroxyphenethyl β -D-glucopyranoside の 6"位に trans-p-coumaroyl 基が結合した構造であるが, この結合位置は CD スペクトルにおいて正の Cotton 効果が観察されたことから決定した.¹¹⁾ また,モクセイ科,モクセイ属の植物であるギンモ クセイ (*O. asiaticus* NAKAI) の葉から,¹⁶⁾ 化合物 **6** の3'位にメトキシ基を有する osmanthuside E (7) が得られた (Fig. 3).¹⁷⁾更に,ギンモクセイの樹皮 の化学成分について検討したところ,分子内に D-apiose を有する osmanthuside H-J (8-10)を単 離することができた (Fig. 3).¹⁸⁾ 化合物 8 は *p*hydroxyphenethyl β -D-glucopyranoside の 6' 位に β -D-apiose が結合している構造であり,この結合位置

OН

ĠН

23

HO

は¹H-detected heteronuclear multiple bond correlation (HMBC) スペクトルより決定した.ま た, 化合物 **9**の *trans-p*-coumaroyl 基及び化合物 **10** の *trans*-feruloyl 基の結合位置についても同様に HMBC スペクトルから決定した.ハシドイの葉か らは 3'-O-β-D-glucopyranosylsalidroside (**11**) を得る ことができた (Fig. 3).¹⁹⁾

著者らは、キンモクセイの葉のフェニルエタノイ ド配糖体について更に検索を行った. その結果, 化 合物1の3″位に a-L-rhamnose が結合した新規化合 物, osmanthuside B (12) を単離することができた (Fig. 4).^{9,10)}また, ハシドイの葉から化合物 12 の 3' 位及び3位に、それぞれ、水酸基を有する syringalide-A-3'-a-L-rhamnoside (13) 及び isosyringalide-A-3'-a-L-rhamnoside (14) を単離し、それ らの化学構造を明らかにした. (Fig. 4) ¹²⁾ ギンモクセ イの葉からは化合物 2 の 3"位に a-L-rhamnose が結合 した osmanthuside D (15) が得られた (Fig. 4).¹⁷⁾本 化合物は p-coumaroyl 基の7′位及び8′位間の二重 結合において cis体と trans体が互いに平衡状態に あり、それぞれの単離が困難であった.17)また、こ の cis/trans 異性化はパラ位の水酸基をアセチル基 で保護することにより抑えられることが判明した. 17) 一方, モクセイ科, モクセイ属のヒイラギ [0. ilicifolius (HASSK.) MOUILLEFERT] の葉のフェニルエ タノイド配糖体について検討したところ, acteoside の trans-caffeoyl 基が cis 型となった cis-acteoside (16) を得ることができた (Fig. 4).²⁰⁾ これは,¹H-NMR スペクトルにおいて 7′ 位及び 8′ 位間の結合 定数が 12.6 Hz であることから明らかとなった.本 化合物はヒイラギと同属の植物であるヒイラギモク セイ (O. fortunei CARR.) の葉からも確認された.²¹⁾

著者らは、ギンモクセイの葉について再度検討 を行い、化合物 12 の 4″位の *p*-coumaroyl 基が 6″ 位に転位した osmanthuside B₆ (17) を単離するこ とができた (Fig. 4). ¹⁷⁾ また、ハシドイの葉から echinacoside の *trans*-caffeoyl 基が *cis* 型となった *cis*-echinacoside (18) を単離した (Fig. 4). ¹⁹⁾ この 構造は化合物 16 と同様に ¹H-NMR スペクトルの結 合定数 ($J_{7,8}$ = 12.9 Hz) より明らかとなった. 一方、 シソ科 (Labiatae) 植物のヒメオドリコソウ (*Lamium purpureum* L.) の全草の化学成分について検討した ところ、化合物 18 の 4 位の水酸基がメトキシ基に 置き換わった lamiuside E (19)、分子内に *β*-Dgalactose, *β*-D-glucose 及び *a*-L-rhamnose を有する lamiuside A – D (**20** – **23**) を単離し、それらの化学 構造を明らかにすることができた (Fig. 4).²²⁾

著者らは、ハシドイの葉の配糖体成分について再 度,詳細な検討を行った.その結果, acteoside 及び echinacosideの a-L-rhamnose の 4‴位に、セコイリド イド配糖体である oleoside 11-methyl ester が結合し た新規フェニルエタノイド配糖体. oleoacteoside (24) 及び oleoechinacoside (25) を単離することが できた (Fig. 5). ^{23,24)} 化合物 24 は、無水酢酸-ピリ ジンを用いてアセチル化を行うと dodecaacetate 体 を与える. この dodecaacetate 体の正イオンモード FAB-MS [*m*/*z*:1664 (M+H+TEA)⁺] より、分子 式は C₇₀H₈₂O₃₇ であることが判明した. また, 化合物 25 についても同様にアセチル化を行い、得られた pentadecaacetate 体の正イオンモード FAB-MS [m/z:1952 (M+H+TEA)+] より, 分子式を C₈₂H₉₈O₄₅と決定した.一方,イボタノキの葉からは p-hydroxyphenethyl β -D-glucopyranoside の 2' 位及 び6′位に、それぞれ、oleoside 11-methyl ester が結 合した oleonuezhenide (26) を単離することができ t (Fig. 5). ²⁵⁾

これまでに述べてきたフェニルエタノイド配糖体 は、フェニルエタノイド部分のa位のアルコール性 水酸基と糖が結合していたが、イボタノキの葉から フェニルエタノイド部分の4位のフェノール性水酸 基と糖が結合している des-*p*-coumaroylibotanolide (27), ibotanolide (28)及び ibotanolide B (29)を 見いだすことができた(Fig. 6).^{15,26)}また、ギンモ クセイの葉から化合物 29 の3'位の水酸基がメトキ シ基に置き換わった ibotanolide C (30)²⁷⁾及び化合 物 27 の位置異性体である osmanthuside F (31)²⁸⁾ を得た(Fig. 6). 化合物 31 の糖の結合位置について は nuclear Overhauser effect (NOE)差スペクトル により決定した.すなわち、1'位の水素を照射した とき、2位の水素に NOE が認められることから糖 は 3位に結合していることが判明した.

一方,シソ科植物のカキドオシ (*Glechoma* hederacea L.)の全草から 4-allyl-2-hydroxyphenyl 1-*O-β-D-*apiosyl-(1→6)-*β-D-*glucopyranoside (**32**)が単離 された (Fig. 6).²⁹⁾また,スイカズラ科(Caprifoliaceae) の植物であるガマズミ (*Viburnum dilatatum* THUNB.)の葉から,化合物 **32**の4位の水酸基がメト キシ基に置き換わった 4-allyl-2-methoxyphenyl 1-*Oβ-D-*apiosyl-(1→6)-*β-D-*glucopyranoside (**33**) を得る ことができた (Fig. 6).³⁰⁾

HO

26

HO

Fig. 5. Structures of Compounds 24-26

όн

НÓ

Ġн

Fig. 6. Structures of Compounds 27-33

2) フェニルプロパノイド配糖体

著者らは、ギンモクセイの葉から osmanthuside G (34)と命名した新規フェニルプロパノイド配糖体を 単離し、その化学構造を明らかにした(Fig. 7).²⁸⁾ また、ヒイラギモクセイの葉から本化合物と類似の構 造を有する guaiacylglycerol-4-*O*-β-D-glucopyranoside (35)を echinacosideと共に得た(Fig. 7).³¹⁾一方、 ギンモクセイの樹皮から isosyringinoside(36)及び isoconiferinoside(37)を単離した(Fig. 7).³²⁾化合 物 36 及び 37 はフェニルプロパノイド部分の4位 のフェノール性水酸基と9位のアルコール性水酸基 に糖が結合している点が特徴的である.

3)フェノール配糖体

著者らは、ガマズミの葉の化学成分について再 度、詳細な検討を行った. その結果、2種の新規配糖 体、p-hydroxyphenyl 6-O-trans-caffeoyl-β-D-glucoside (**38**) 及び p-hydroxyphenyl 6-O-trans-caffeoyl-β-Dalloside (**39**) を単離することができた(Fig. 8).³⁰⁾ 特に、化合物 **39** のように D-allose が結合した配糖体 の例は珍しい. また、ガマズミと同属の植物であるミ ヤマガマズミ(V. wrightii MIQ.)の葉の成分検索を行 い、3種の新規フェノール配糖体、p-hydroxyphenyl 4-O-trans-caffeoyl-β-D-glucopyranoside (**40**)、 p-hydroxyphenyl 2-O-cis-p-coumaroyl-β-D-

Fig. 7. Structures of Compounds 34-37

Fig. 8. Structures of Compounds 38-43

Fig. 9. Structures of Compounds 44 – 47

glucopyranoside (**41**) 及び *p*-hydroxyphenyl 6-*O*-*cis*p-coumaroyl-β-D-gluco-pyranoside (42) を単離した (Fig. 8).³³⁾ 先に, 化合物 **15** の *p*-coumaroyl 基に関 する cis/trans 異性化について, cis 体と trans 体が 互いに平衡状態にあり、それぞれの単離が困難であ ることを述べたが、¹⁷⁾ 化合物 41 及び 42 が pcoumaroyl 基を有していることから、再度、この問 題について検討を行った. cis/trans 異性化には光の 関与が考えられるので, 蛍光灯下及び日光下におい て検討した.その結果,蛍光灯下では異性化は認め られなかったが、日光下においては異性化が認めら れた. これより, これまで困難とされていた cis 体及 び trans 体の単離は、日光を避けて行えば蛍光灯下 においても可能であることが明らかとなった.³³⁾ 一方, クルミ科 (Juglandaceae) 植物のオニグルミ (Juglans mandshurica MAXIM. var. sieboldiana MAKINO)の樹皮から 4'-hydroxy-2',6'-dimethoxyphenol 1-O-β-D-(6-O-syringoyl) glucopyranoside (43) を単離し、 その化学構造を明らかにすることができた (Fig. 8).34)

4) ポリアルコール配糖体

著者らは、スイカズラ科の植物であるミヤマウグイ スカグラ (Lonicera gracilipes var. glandulosa MAXIM.) の葉の成分について検討を行い、3種の新規ポリア ルコール配糖体, erythritol-1-O-(6-O-trans-caffeoyl)- β -D-glucopyranoside (44), 1,2,3,4-tetrahydroxy-2methyl-butane-4-O-(6-O-trans-caffeoyl)- β -Dglucopyranoside (45) 及び arabitol-5-O-(6-O-transcaffeoyl)- β -D-glucopyranoside (46) を単離し、各種 二次元 NMR スペクトルからそれらの化学構造を 決定した (Fig. 9).³⁵⁾ また,本植物からは 2 種の新 規化合物, (2R)-O-[4'-(3"-hydroxypropyl)-2'methoxyphenyl]-3-O- β -D-glucopyranosyl-snglycerol (47) 及び (2S)-O-[4'-(3"-hydroxypropyl)-2'methoxyphenyl]-1-O- β -D-glucopyranosyl-sn-glycerol を得ることができた (Fig. 9).³⁶⁾ これらは,糖の結 合位置が異なることにより 2 位の絶対配置が逆と なるグリセロール配糖体であり,その天然からの単 離は珍しい.

おわりに

本稿では,著者らがこれまでに行ってきた新規 フェニルエタノイド配糖体及びその関連化合物の 検索と構造解析について概説した.これらの化合物 には,近年新たな生理活性が報告されている.それ と平行して構造解析学的研究も更なる発展を遂げ るものと期待している.

REFERENCES

- Dewick P. M., "Medicinal Natural Products: A Biosynthetic Approach, Second Edition," John Willey & Sons, New York, 2002, pp. 10-11.
- Birkofer L., Kaiser C., Thomas U., Z. Naturforsch., B, Chem. Sci., 23, 1051-1058 (1968).
- Stoll A., Renz J., Barack., Helv. Chim. Acta, 33, 1877-1893 (1950).
- 4) Chiou W., Lin L., Chen C., J. Pharm. Pharmacol., 56,

743 - 748 (2004).

- Diaz A., Abad M., Fernandez L., Silvan A., De Santos J., Bermejo P., *Life Sci.*, **74**, 2515 – 2526 (2004).
- 6) Xiong Q., Hase K., Tezuka Y., Namba T., Kadota S., Life Sci., 65, 421-430 (1999).
- 7) Wang H., Xu Y., Yan J., Zhao X., Sun X., Zhang Y., Guo J., Zhu C., *Brain Res.*, **1283**, 139-147 (2009).
- 8) Kikuchi M., Yakugaku Zasshi, 104, 535-539(1984).
- 9) Kikuchi M., Yamauchi Y., Yakugaku Zasshi, 105, 411-414 (1985).
- Kikuchi M., Yamauchi Y., Tohoku Yakka Daigaku Kenkyu Nempo, **31**, 99-104 (1984).
- Cooper R., Solomon P. H., Kubo I., Nakanishi K., Shoolery J. N., Occolowitz J. L., *J. Am. Chem. Soc.*, **102**, 7953-7955 (1980).
- Kikuchi M., Yamauchi Y., Tanabe F., Yakugaku Zasshi, 107, 350-354 (1987).
- Kikuchi M., Yamauchi Y., Sugiyama M., Tohoku Yakka Daigaku Kenkyu Nempo, 35, 113 – 118(1988).
- 14) Kikuchi M., Yamauchi Y., Nippon Nogeikagaku Kaishi, 56, 939-941 (1982).
- Kikuchi M., Yamauchi Y., Nagaoka I., Sugiyama M., Takahashi Y., Yakugaku Zasshi, 108, 647-652 (1988).
- Sugiyama M., Kikuchi M., Tohoku Yakka Daigaku Kenkyu Nempo, 38, 59-64 (1991).
- 17) Sugiyama M., Kikuchi M., Chem. Pharm. Bull., 38, 2953 2955 (1990).
- Sugiyama M., Kikuchi M., Phytochemistry, 32, 1553-1555 (1993).
- Machida K., Ohkawa N., Ohsawa A., Kikuchi M., J. Nat. Med., 63, 192-194 (2009).
- 20) Kikuchi M., Yamauchi Y., Yakugaku Zasshi, 105,

442-448 (1985).

- Kikuchi M., Yamauchi Y., Yakugaku Zasshi, 105, 542-546 (1985).
- 22) Ito N., Nihei T., Kakuda R., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull.*, 54, 1705-1708 (2006).
- 23) Kikuchi M., Yamauchi Y., Tohoku Yakka Daigaku Kenkyu Nempo, 33, 63-68 (1986).
- 24) Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M.,
 Yakugaku Zasshi, **109**, 366 371 (1989).
- 25) Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M., Yakugaku Zasshi, 109, 460 – 463 (1989).
- 26) Kikuchi M., Yamauchi Y., Sugiyama M., Takahashi Y., Yakugaku Zasshi, 109, 496-498 (1989).
- 27) Sugiyama M., Kikuchi M., Phytochemistry, 30, 3147-3149 (1991).
- 28) Sugiyama M., Kikuchi M., Chem. Pharm. Bull., 40, 325-326 (1992).
- 29) Yamauchi H., Kakuda R., Yaoita Y., Machida K., Kikuchi M., Chem. Pharm. Bull, 55, 346 – 347 (2007).
- 30) Machida K., Nakano Y., Kikuchi M., *Phytochemistry*,
 30, 2013 2014 (1991).
- Kikuchi M., Yamauchi Y., Anzai K., Tohoku Yakka Daigaku Kenkyu Nempo, 32, 59-62 (1985).
- 32) Sugiyama M., Nagayama E., Kikuchi M., *Phytochemistry*, **33**, 1215-1219 (1993).
- 33) Machida K., Kikuchi M., Chem. Pharm. Bull., 41, 248-251 (1993).
- 34) Machida K., Yogiashi Y., Matsuda S., Suzuki A., Kikuchi M., J. Nat. Med., 63, 220-222 (2009).
- 35) Matsuda N., Kikuchi M., Chem. Pharm. Bull., 43, 1049-1051 (1995).
- Matsuda N., Kikuchi M., Tohoku Yakka Daigaku Kenkyu Nempo, 43, 75-78 (1996).