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1. Introduction 

Cell adhesion is essential for various biological and pathological functions of 

multicellular organisms. There are two major types of cell adhesions, cell-cell and cell-

extracellular matrix (ECM) adhesion [1].These adhesions have a different function and 

recognize different ligands. Cadherins and immunoglobulins are homophilic cell 

adhesion molecules (CAMs) for cell-cell adhesion, while integrins and selectins are 

heterophilic CAMs for cell-ECM adhesion. Cooperation or cross-regulation between 

cell–cell and cell–ECM adhesion has been implicated in multiple tissues, 

developmental processes and cancer metastasis. CAMs are cell surface receptors that 

not only promote cell adhesion in the ECM but also allow cells to interact and 

communicate with each other. In CAMs, epithelial cell adhesion molecule (EpCAM) is 

a unique type I membrane protein that is not one of the four major CAM families: 

cadherin, integrin, selectin, and immunoglobulin-like-CAMs [2]. In the majority of 

cancer cells, EpCAM overexpression strongly correlates with the worse survival rates 

and poor prognoses for cancer patients [3-5]. For example, the expression levels of 

EpCAM are significantly associated with tumor recurrence in colon [6] and liver [7] 

cancers, and have been correlated with a decrease in the overall survival rate of patients 

with gallbladder cancer [8]. Furthermore, the gene silencing of EpCAM has been shown 

to lead to a decrease in cell proliferation[9], migration, and lymph-node metastasis in 

primary and metastatic breast cancer [10]. In cell proliferation, EpCAM is sequentially 

cleaved by ADAM17 and presenilin-2, and then a fragment of the intracellular domain 

is translocated into the nuclear with FHL2, β-catenin, and Lef-1 to drive growth-signal 

genes such as c-Myc [9]. On the other hand, EpCAM promotes homophilic cell-cell 

interactions and provides functional antagonism for E-cadherin-mediated adhesions [11] 

(Fig1). In addition, due to a common sequence with nidogen, a component of ECM, 

EpCAM is also thought to be involved in cell-ECM adhesion [12]. However, the 

connection between EpCAM expression and cell migration remains largely unknown.  
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Integrins are heterodimeric cell-surface receptors that mediate cell adhesion in the 

ECM typically by promoting epithelial cell adhesion to the basement membrane, and 

these receptors also contribute to the migration, proliferation and survival of tumor cells 

[13]. Integrins and EpCAM both span the cell membrane and promote cellular signaling 

and cancer migration, which is why elucidating the precise mechanisms involved in 

EpCAM-mediated adhesion is fundamental to understanding coordinated cell migration. 

Previous studies have associated EpCAM with a tetraspanin-enriched microdomain in 

highly metastatic cells, where integrin α3 has also been observed, which suggests a 

functional association of EpCAM and ECM adhesion [14].  

In the present study, we hypothesized the possibility of an interplay between 

EpCAM and integrin in cell adhesion, migration and proliferation. To elucidate this 

hypothesis, we established EpCAM-null cell lines, and found that the association 

between EpCAM and integrin β1 regulated cell adhesion and proliferation as well as 

cellular signaling. This association may shed light on the roles of EpCAM expression 

in cancer progression and metastasis, which could be useful in the development of new 

cancer drugs. 

Fig. 1. Schematic structure of EpCAM. 

EpCAM consists of extracellular domain, transmembrane domain and 

intracellular domain, which can bind with FHL2 and β-catenin, resulting in an 

inhibition of E-cadherin-mediated cell-cell adhesion.  
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2. Materials and methods 

2.1 Antibodies and reagents 

Antibodies for Western blot included the following: monoclonal antibodies(mAb) 

against integrin β1 (610468), integrin α5 (610634), integrin αV (611013), p-focal 

adhesion kinase (FAK) (611807), and FAK (610088) were purchased from BD 

Biosciences; mAbs for EpCAM (sc-25308) and integrin α3 (sc-6592) were acquired from 

Santa Cruz Biotechnology; mAbs against p-AKT (4060s), AKT (9272s), p-ERK 1/2 

(4370s), and ERK 1/2 (4695s) were acquired from CST; and, mAbs against α-tubulin 

(T6199) were acquired from Millipore Sigma. For flow cytometry analysis and 

immunostaining, the following antibodies were used: EpCAM (Billerica, CBL251), 

integrin β1 (Development Studies Hybridoma Bank, University of Iowa, clone P5D2), 

integrin α3 (Santa Cruz Biotechnology, sc-32237), integrin α5 (Millipore Sigma, 

MAB1999), and integrin αV (BioLegend, 327902). Fibronectin (F0895) and laminin-511 

(NO.892011) were purchased from Millipore Sigma and Matrixome Japan, respectively. 

2.2. Cell culture 

The CW-2, 293T and HeLa cell lines were purchased from RIKEN, Japan. A431 

and MIA PaCa-2 cells were obtained from ATCC and Japanese Cancer Research 

Resources Bank, respectively. All cell lines were maintained at 37 °C in Dulbecco's 

modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum (FBS), 

under a humidified atmosphere containing 5% CO2. 

2.3. Genomic deletion of EpCAM-KO in CW-2 and A431 cells 

CRISPR/Cas9-based EpCAM-KO cells were established as described previously 

[15, 16]. Briefly, the target sequence of human EpCAM 

(TAATGTTATCACTATTGATC) was chosen from the CRISPR-Cas9 KO library and 

cloned into PX458 (plasmid 48138; Addgene). EpCAM-KO cell lines were created by 

electroporating cells according to the manufacturer's recommendations (Amaxa cell line 



4 
 

Nucleofectorkit R). Two days after transfection, GFP-positive cells were sorted using 

FACSAria II (BD Biosciences). Approximately 10 days later, the EpCAM-positive cells 

were removed by sorting. The negative selections were repeated 3 times to obtain a 

stable EpCAM-KO cell line. 

2.4. Western blot and immunoprecipitation analysis 

Cell lysates were prepared with lysis buffer containing 20 mM Tris-HCl at pH 7.4, 

150 mM NaCl, 1% Triton X-100, protease inhibitors, and phosphatase inhibitors 

(Nacalai Tesque, Kyoto, Japan) on ice, which was centrifuged at 15,000 g for 10 min at 

4 °C. After removing the nuclei by centrifugation, proteins were normalized by a 

bicinchonini cacid protein assay kit (Thermo Fisher Scientific). An equal amount of 

protein from each sample was subjected to SDS-PAGE and transferred to a PVDF 

membrane (Millipore Sigma). After blocking with 5% non-fat milk in TBS/0.05% 

Tween-20 (TBST) and washing, the proteins were probed with indicated antibodies 

overnight. The membrane was then incubated with secondary antibodies for 2 h. 

Detection was performed via chemiluminescence (Millipore Sigma). For 

immunoprecipitation, cells were lysed in 0.1% Triton in TBS buffer (20 mM Tris-HCl 

pH7.4, 150 mM NaCl) with a protease inhibitor and then centrifuged. The supernatants 

were immunoprecipitated and incubated with integrin β1 (P5D2) and a high-capacity 

protein-A mutant, Ab-Capcher Mag (ProteNova, Japan). After washing twice, the 

immunocomplex was eluted in2.5x loading buffer and subjected to SDS-PAGE. 

2.5. Flow cytometry analysis 

Cells were detached from the culture dishes using trypsin containing1 mM EDTA, and 

were then stained with the indicated primary antibodies for 1 h on ice, followed by 

washing, and then incubation with Alexa Fluor 647 goat anti-mouse IgG (Thermo Fisher 

Scientific) for 30 min on ice. Finally, the cells were washed three times with PBS and 

analyzed via FACS Calibur (BD Biosciences). 
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2.6. Cell-migration assay 

The cell-migration assay was described previously [15]. The cell migration test was 

accomplished using a 24-well transwell chamber system (8.0-μm pore control inserts; 

BD Biosciences). Only the bottom side of the chamber was coated with 10 μg/ml 

fibronectin and let stand at 4 °C overnight, and was then blocked with 1% BSA. Cells 

were trypsinized and re-suspended in culture media. The cell suspensions were then 

seeded in the upper portion of the fibronectin-pretreated chamber at 8 × 104 cells in 0.4 

ml 3% FBS DMEM. Then, 0.5 ml of DMEM with 3%FBS was placed in the bottom 

well. After incubation for 16 h, the migrated cells on the lower surface were fixed, 

stained with crystal violet overnight, and counted under a light microscope. 

2.7. Immunofluorescence staining 

Cells were seeded on a glass-bottom dish washed with PBS and fixed with 4% 

paraformaldehyde. The cells were permeabilized with 0.1% TritonX-100 in PBS. The 

cover glasses were blocked with 0.1% Tween-20and 3% BSA in PBS and then stained 

with EpCAM antibody diluted 1 to100 and let stand overnight at 4 °C. After rinsing 

three times with PBS, cells were incubated with secondary Alexa 488-labeled goat anti-

mouse IgG and then with TO-PRO-3 (Thermo Fisher Scientific) under darkness. Finally, 

the cells were mounted and confocal microscope images were acquired by sequential 

excitation using an Olympus FV1000 laser scanning confocal microscope with an 

UPlanSApo 60X/1.35 Oil objective, which was operated by F10-ASW ver. 4.02 

software. 

2.8. Cell adhesion assay 

Cell adhesion assay was performed as previously described with minor modifications 

[16, 17]. Six-well plates were coated with laminin-511 (0.5 μg/ml) or fibronectin (10 

μg/ml) in PBS overnight at 4 °C and then blocked with 1% BSA in DMEM for 1 h at 

37 °C. The indicated cells were detached and suspended in DMEM without FBS. After 

replating either on laminin-511 (0.5 μg/ml) for 2 h or on fibronectin (1 μg/ml) for 20 
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min, the non-adherent cells were gently removed by washing with PBS 3 times. The 

attached cells were then fixed with 4% paraformaldehyde in PBS, and photos were then 

taken by phase-contrast microscopy (Olympus, Japan). Cell spreading was determined 

in at least 20 cells per view, and only cells that contained lamellipodia regions were 

counted as spreading cells. 

2.9. Cell growth assay 

Cell growth assays were performed as previously described [16]. Briefly, cells were 

seeded into 6-well culture dishes and let stand overnight. Cells were detached and 

counted. The fold change in the number of cells was normalized to the number on day 

0. 

2.10. Statistical analysis 

Results are presented as the mean ± S.E.M. Statistical analyses were performed using 

a two-tail unpaired Welch's correction t-test using GraphPad Prism 6. (*, ** and *** 

represent P-values of <0.05, 0.01, and 0.001, respectively). 
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3. Results 

3.1. Comparison of the EpCAM expression levels in various cancer cell lines 

   EpCAM overexpression is known to be essential for the proliferation, migration and 

invasiveness of tumor cells [10]. However, the molecular mechanisms of EpCAM that 

induce those phenotypes remain unclear. To gain better insight into the expressions and 

functions of EpCAM in cancer cells, we first examined the expression levels of EpCAM 

in six human cell lines: MiaPaCa-2, A431, CW-2, 293T, HeLa, MDA-MB-231, and 

HepG2.As shown in Fig. 2A, CW-2 and A431 cells showed relatively higher expression 

levels among these cells. Other cell lines only expressed a marginal level of EpCAM. 

Therefore, we selected both CW-2 and A431 cells as models for examining the functions 

of EpCAM expression. 
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Fig.2. Establishment of EpCAM knockout (KO) CW-2 cells. 

Expression levels of EpCAM in different cancer lines were examined by 

Western blot. Cell lysates of indicated cell lines were probed with EpCAM, and 

reprobed with anti-α-tubulin antibody. B) The efficiency of an EpCAM knock-

out gene, produced using the CRISP/Cas9 system, was assessed by Western blot 

in CW-2 cell lysates. C) Expression levels of EpCAM on the cell surface (black 

line, no fill) were verified by flow cytometry analysis. The grey shadow 

represents the negative control. D) Phase contrast for both WT and EpCAM KO 

CW-2 cells developed by normal plastic culture. Representative images were 

taken via phase-contrast microscope. Scale bar is 50 mm. E) After incubation, 

representative images were taken via a phase-contrast microscope. Insert: a 

magnified view of the area, as indicated by the box. Scale bar, 130 mm. The 

percentages of spread cells were statistically analyzed. Data represent the mean 

± S.E.M; ***p < 0.01 vs. WT CW-2 cells (n = 5). WT set as 100%. 

 

3.2. EpCAM is important for cell adhesion on the ECM 

To further address the contribution of EpCAM to the adhesion, migration and 

proliferation of carcinoma cells, we began by generating CRISPR/Cas9-mediated KO 

cells using the colorectal cancer CW-2 cell line, which was confirmed by Western blotting 

of total cell lysates and flow cytometry analysis using anti-EpCAM antibody (Fig. 2B and 

C).The wild type (WT) of CW-2 cells exhibited a slightly elongated morphology, while 

the KO cells exhibited a round cell morphology on normal culture dishes (Fig. 2D), which 

suggested that EpCAM may affect cell adhesion in the ECM. We then compared the cell 

adhesion of KO cells with that of the WT cells on cultured dishes coated with laminin-

511, a major component of the ECM of epithelia cells. As shown in Fig. 2E, the KO cells 

showed significantly decreased cell spreading compared with that in the WT cells. These 

results clearly suggested that EpCAM is involved in cell adhesion on the ECM. 
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3.3. Cellular signaling was decreased in the EpCAM-KO cells 

FAK activation is well known to involve integrin receptor clustering with the binding 

of cells in the ECM via cell migration [18]. The activation of AKT and ERK is also 

involved in the integrin signaling pathway[19]. To examine whether these intracellular 

signals were affected by EpCAM deficiency, we compared the phosphorylation levels of 

FAK, AKT and ERK between the WT and KO cells. Interestingly, the phosphorylated 

FAK (p-FAK) and AKT (p-AKT) were significantly decreased in the KO cells, compared 

with those in the WT cells (Fig. 3A upper and middle panel). In agreement with a previous 

report [20], p-ERK was also decreased in the KO cells (Fig. 3A lower panel). These 

results suggested that EpCAM affects integrin-mediated signaling. 
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Fig. 3. Effects of EpCAM on the activation of FAK, AKT and ERK signaling. 

A) Equal amounts of cell lysates from WT and KO cells were analyzed by 

immunoblot with indicated antibodies. B) Quantitative analysis of p-FAK, p-AKT 

and p-ERK expression levels normalized to the total levels of FAK, AKT and ERK 

in WT and EpCAM-KO CW-2 cells. Error bars: S.E.M. of three independent 

samples for each cell line; *p < 0.05, **p < 0.01 vs. WT CW-2 cells. 

 

3.4. Involvement of EpCAM in cell spreading and migration in A431 cells 

To understand whether the phenotypes described in CW-2 cells were general 

observations, we further inactivated EpCAM genes using CRISPR/Cas9 technology in 

A431 cells, because these cells express a relatively high level of EpCAM (Fig. 2). As Fig. 

4A shows, the EpCAM expressions were completely diminished in the total cell lysate 

and on the cell surface. Furthermore, immunostaining analysis revealed that EpCAM 

were localized mainly at the cell-cell contacts in WT cells, while the immunostaining for 

EpCAM was completely negative in KO cells (Fig. 4B). Consistent with the data obtained 

from CW-2 cells, cell spread on a fibronectin-coated dish was also suppressed in 

EpCAM-KO A431 cells (Fig. 4C). Moreover, a transwell assay showed that cell 

migration was also significantly attenuated by the depletion of EpCAM (Fig. 4D), 

suggesting that the expression of EpCAM plays an important role in integrin-mediated 

cell migration. Furthermore, we found a similar tendency for the down-regulation of p-

FAK and p-ERK in the KO of CW-2 (Fig. 3) and A431 cells compared with WT cells 

(data not shown). Several in vitro and in vivo studies have demonstrated that EpCAM 

predominately act on the induction of cell proliferation [21]. Therefore, we performed 

colony-formation and cell-proliferation assays (Fig. 4E and F). As expected, the EpCAM 

KO cells significantly inhibited colony formation and cell proliferation in A431 cells. 

3.5. Co-Immunoprecipitation experiment demonstrated that EpCAM associates 

with integrin β1  

Integrin β1 subunits involve 12 integrin constituents, the largest integrin subfamily, 

that play important roles in cell adhesion [13]. To understand EpCAM regulation and 
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integrin-mediated cellular function and signaling, we examined integrin-mediated 

complex formation. Interestingly, co-immunoprecipitation using anti-integrin β1 

antibody showed EpCAM proteins existing in the immunoprecipitates of CW-2 cells 

(Fig.5A) and A431 cells (Fig. 5B). 

 

Fig. 4. Comparison of cell adhesion, migration, proliferation and colony 

formation in WT and EpCAM-KO A431 cells. 

A) EpCAM-KO cells were confirmed by immunoblot with anti-EpCAM 

antibody, α-tubulin was used as a loading control (left). Expression levels of 

EpCAM on the cell surface were tested using flow cytometry analysis in WT and 

KO cells (Black line, no fill). The grey shadow represents negative controls without 

the first antibody (right). B) WT and EpCAM-KOA431 cells were cultured on a 

coverslip, immunostained with anti-EpCAM antibody (green) and TO-PRO-3 for 

nuclei (blue). Scale bar is 10 mm. C) Cell spreading was observed on a fibronectin-

coated dish, and representative images were taken via a phase-contrast microscope 

after replating for 20 min. Insert: a magnified view of the area indicated by the box. 

Scale bar, 30 mm (left). The percentages of spread cells were statistically analyzed. 

WT was set as 100% (right). D) Cell migration toward fibronectin was determined 

by a transwell assay, as described in “Materials and Methods.” Migrated cells were 

stained with crystal violet solution. Representative images were shown using phase-

contrast microscopy (left). Scale bar is 35 mm. The cell numbers were obtained 

from five random fields. WT was set as 100% (right). E) WT and KO cells 

(1000/per well) were grown for 14 days, then fixed and stained with crystal violet 
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and acquired. Scale bar is 100 mm (left). The numbers of foci were counted in each 

well. WT was set as 100% (right). F) Cells were cultured in DMEM containing 10% 

FBS, and cell numbers were counted on days 1, 2, and 3 after seeding. All graphs 

represent the mean ± S.E.M; *p < 0.05, **p < 0.01, ***p < 0.001 vs. WT A431 

cells (n = 5). 

 

Fig. 5. Complex formation between EpCAM and integrin β1 in both cells. 

Cell lysates obtained from the WT and EpCAM-KO of CW-2 (A) and A431 (B) were 

immunoprecipitated using anti-β1 antibody and then immunoblotted with EpCAM 

(upper panels) and β1 (low panels) antibody for detection.  

3.6 EpCAM-KO A431 cells reduced the expression levels of integrin α5 

Furthermore, analysis by Western blot showed that the expression levels of a5 (not 

α3, αV and β1) were decreased in total cell lysates (Fig. 6A), which was also confirmed 

by flow cytometry analysis of EpCAM-KO A431 cells (Fig. 6B). These results strongly 

suggest that EpCAM expression and function may at least partially be dependent on 

integrins. 
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Fig 6. Comparison of integrin β1, α3, α5, and αV in WT and KO A431 cells. 

A) Cell lysates from WT and KO cells were immunoblotted with indicated integrin 

antibodies. a-Tubulin was used as a loading control. B) Cells were stained with 

integrin antibodies (bold line, no fill) or without (grey shadow) and subjected to 

flow cytometry analysis to examine the expression levels on the cell surface. 
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4. Discussion 

In the present study, we used CW-2- and A431 EpCAM-deficient cancer cell lines to 

examined the involvement of EpCAM in cell adhesion, migration and proliferation, as 

well as in the activation of FAK, AKT and ERK. Mechanistically, it is plausible that the 

physical interaction with integrin β1 could be one of the main connections between 

EpCAM and ECM adhesion that includes cell spreading and migration. In fact, this 

hypothesis was greatly supported by the evidence that EpCAM shares a common 

sequence with nidogen, which is an important component of ECM [12]. It is well known 

that the interdependence between cell-cell and cell-ECM adhesion plays an important role 

in cell biological functions [22]. For example, the loss of cell-ECM adhesion resulted in 

an aberrant distribution of the actin cytoskeleton, a reduction in cell migration [23], and 

an increase in cell-cell adhesion [24]. Conversely, the disruption of cell-cell adhesion 

induced by TGF-β, increased the cell-ECM adhesion [25]. EpCAM is known to exist in 

tetraspanin-enriched micro-domains [14]. FHL2 might be involved in interaction between 

EpCAM and integrins (Fig. 7). Although the underlying molecular mechanism for the 

interaction between EpCAM and integrin β1 remains unclear, it is clear that EpCAM 

regulates cell-ECM adhesion. 

Curiously, in previous reports EpCAM negatively regulated cell migration and ERK 

phosphorylation in a polarized MDCK cell line and in Xenopus laevis development [26, 

27]. Thus far, the differences in the potential roles of EpCAM in various cells remain 

unclear, but it is reasonable to postulate that EpCAM plays different roles in normal cells 

than in cancerous cells. Actually, cancer tissues differentially express integrins, which are 

associated with disease progression and diminished patient survival [13]. In cancers, 

EpCAM could associate with β1 to help integrins drive cancer cell migration and 

proliferation.  

In the majority of cancers, EpCAM overexpression correlates with an unfavorable 

prognosis, and can be utilized as a biomarker to distinguish a higher risk for recurrence 

in patients. Thus, EpCAM is an attractive target for the treatment of various cancers. 
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Although the use of an anti-EpCAM antibody alone failed in clinical trials, receptor 

binding antibodies that recognize both EpCAM and CD3 have been effective and 

approved for the treatment of colon cancer [28]. In the present study, we found that 

EpCAM associated with integrin β1 and regulated cell adhesion,and, therefore, we are 

motivated to speculate that a bi-specific antagonist targeting both β1 and EpCAM, or both 

specific functional blocking antibodies, could be useful for cancer treatment. 

 

Fig.7 Proposed molecular for complex formation between EpCAM and 

integrin. 

It has been reported that FHL2 can associated with either EpCAM [2] or integrin 

[29] via cytoplasmic domain. Therefore, FHL2 may directly or indirectly involved 

in both physical interaction and functional connection.  
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6. Abbreviation 

 

CAMs: cell adhesion molecules; 

  

ECM: extracellular matrix; 

 

EpCAM: epithelial cell adhesion molecule; 

  

ERK: extracellular regulated protein kinases; 

 

FAK: focal adhesion kinase; 

 

FBS: fetal bovine serum; 

 

KO: knockout; 

 

WT: wild type. 
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