キノコのステロールの分子構造解析学的研究

八百板康範, 菊地 正雄

Molecular Structural Analysis of Sterols from Mushrooms

Yasunori YAOITA and Masao KIKUCHI

(Received November 20, 2008)

はじめに

ステロールは、ステロイド骨格の17位に炭素数 8~10の脂肪族側鎖が結合し,3β位に水酸基を有 するアルコールの総称であり,動物,高等植物,菌 類にそれぞれ特徴的な構造のステロールが存在す る.これらは、側鎖の炭素数の違いにより、C27-ステロール, C₂₈-ステロール, C₂₉-ステロールに 分類される.このうち、C27-ステロールの側鎖部 の24位に、ギ酸塩あるいはメチオニン由来の炭素 原子1個が結合したステロールを ergostane と称 し、その代表例として ergosterol が知られている (Fig. 1).¹⁾これは、 菌類が産生するステロールで あり、麦角、酵母、シイタケの他、日本薬局方に収 載されているブクリョウやチョレイの主要成分であ る. また、プロビタミンDの一つでもあり、紫外 線照射によりビタミン D₂に変化する.¹⁾ 更に,近 年, ergosterol に抗炎症活性²⁾ や抗発がんプロモー ター活性³⁾が見出され、有望な発がん抑制物質の 一つとして注目されている.4) 菌類にはその他に、

ergosterol peroxide や cerevisterol などの ergosterol 類似体の存在も知られており (Fig. 1), これらは抗 腫瘍活性,⁴⁾抗結核菌活性⁵⁾を有している.また, 最近, ergosterol peroxide はラット腸内細菌により, 細胞毒性を有する化合物 (M1 – M3, Fig. 2) に代 謝されることが明らかにされ,そのうちの M2 及び M3 はヒト結腸直腸腺がん細胞 (CACO-2, WiDr, DLD-1, Colo320) に対して ergosterol peroxide より も高い増殖抑制活性を示すことが報告されている.⁶⁾

このように, ergosterol をはじめとする菌類由来 のステロールは生物活性の面から興味が持たれる 化合物であるが,これらは構造が類似しているこ とから,その分離,精製が困難であったため詳細 な検討がなされていなかった.このような観点か ら著者らは,近年発達してきた最新の分離分析法 や二次元 NMR 法を中心とした各種スペクトル分析 法を駆使することにより,菌類の一種であるキノ コ類(30種)より多数の新規ステロールを単離し, それらの化学構造を明らかにしてきた.本稿では、

Fig. 1. Basic Skeleton of Ergostane and Structures of Ergosterol, Ergosterol Peroxide and Cerevisterol

これまでに行ってきた新規ステロールの分子構造 解析学的研究について,その化学構造上の特徴を 中心に概説する.

1) △^{5,8} 構造を有するステロール

サルノコシカケ科 (Polyporaceae) に属するチャ カイガラタケ (*Daedaleopsis tricolor*) は,主に北 半球に分布し,サクラなどの広葉樹枯木上に群 がって発生する白色腐朽菌であり,その熱水抽出 物 (多糖類) には抗腫瘍活性が見出されている.⁷⁾ 著者らは,これまでに十分な検討がなされていな かったチャカイガラタケのステロール成分につい て検索を行い, $\Delta^{5,8}$ 構造を有する ergosta-5,8,24(28)trien-3β-ol (1) を新規化合物として単離すること ができた (Fig. 3).⁸⁾ この構造は,電子イオン化 (EI)-MS のフラグメンテーションの解析,¹H-及び ¹³C-NMR スペクトルの検討より決定した.

2) 5α,6α-Epoxy 基を有するステロール

次に,著者らは,医食同源の観点からその重要性 が認識されながらも、未だ詳細な検討がなされてい ない食用キノコについて、そのステロール成分を明 らかにすることを目的に検索を行った. その結果, キシメジ科(Tricholomataceae)の食用キノコであ るシモフリシメジ (Tricholoma portentosum)から、 $5\alpha, 6\alpha$ -epoxy-(22*E*)-ergosta-8,22-diene-3 $\beta, 7\beta$ -diol (**2**) を得ることができた (Fig. 3). 9 本化合物は, 天然 由来のステロールとしてはこれまでに例のない 5α, 6α -epoxy- 3β , 7β -dihydroxy- Δ^8 部分構造を有している. 特に、7位の水酸基の立体配置については、C5D5N 中での 'H-NMR スペクトル測定において,18 位及 び19位の核間メチル基に対して7位の水酸基から の pyridine - induced shift が認められたことから β 配置と決定した.^{10,11)} 一方,シイタケ(Lentinula edodes)のステロール成分について検索したところ、

Fig. 2. Structures of M1 - M3

Fig. 3. Structures of Compounds 1 - 8

化合物 2 の 14 位の水素が水酸基に置き換わった 5 α , 6 α -epoxy-(22E)-ergosta-8,22-diene-3 β ,7 β ,14 α -triol (**3**) を単離することができた (Fig. 3). ¹²⁾ また, マツタケ (*Tricholoma matsutake*)からは 5 α ,6 α -epoxy-(22E)ergosta-8,14,22-triene-3 β ,7 α -diol (**4**)が得られた (Fig. 3). ^{13,14)}本化合物は分子内に $\Delta^{8,14}$ 構造を有して いるが,これは UV スペクトル (λ_{max} 247 nm)によ り確認した. ¹⁵⁾一方,サルノコシカケ科に属するマ イタケ (*Grifola frondosa*)の成分検索を行ったとこ ろ, ^{16,17)}化合物 2 のステロイド骨格内の二重結合に 関する位置異性体である 5 α ,6 α -epoxy-(22E)-ergosta-8(14),22-diene-3 β ,7 β -diol (**5**)を単離することができ た (Fig. 3). ¹⁸⁾興味深いことに,化合物 2 の側鎖部 分に関する類似体 (化合物 **6**)が最近,海綿動物 *Topsentia* sp. から単離,報告されている (Fig. 3). ¹⁹⁾

次に、食用キノコのステロール成分との比較を目 的として, テングタケ科 (Amanitaceae) の有毒キノ コであるテングタケ (Amanita pantherina) 及び シロオニタケ (Amanita virgineoides) についても 同様の検討を行った. その結果,両者から 5α,6α;8α, 9α -diepoxy-(22E)-ergost-22-ene- 3β , 7α -diol (7) ϵ 得ることができた (Fig. 3). 9 本化合物は食用キノコ であるホンジメジ (Lyophyllum shimeji), ⁹⁾ シモフ リシメジ,⁹⁾ ブナジメジ (Hypsizigus marmoreus)⁹⁾ や薬用として用いられるライガンキン(Omphalia lapidescens)²⁰⁾にも含有されていることが明らか となった.更に、海綿動物 Homaxinella sp. からも 単離,報告されており,21)キノコと海綿動物の共 通成分である点は興味深い.一方,ブナシメジか らは化合物7の7位の水酸基に関するエピマーで $\delta = 5\alpha, 6\alpha; 8\alpha, 9\alpha$ -diepoxy-(22E)-ergost-22-ene-3 β , 7β-diol (8) が単離された (Fig. 3).⁹⁾

3) 5α , 9α -Epidioxy 基を有するステロール

著者らは, 更にブナシメジのステロール成分に

ついて検討を行った. その結果, $5\alpha,9\alpha$ -epidioxy- 3β hydroxy-(22*E*)-ergosta-7,22-dien-6-one (**9**) 及び $5\alpha,9\alpha$ -epidioxy- 3β -hydroxyergost-7-en-6-one (**10**) を得ることができた (Fig. 4). ¹²⁾ これらの化合物 は大変不安定であり, CDCl₃中での NMR スペクト ルの測定中に構造不明の化合物に変化することが 明らかとなった. 化合物 **9** 及び **10** は, 分子内に天 然由来のステロールとしてはこれまでに例のない $5\alpha,9\alpha$ -epidioxy 基を有する点が特徴的である. この 部分構造の証明は, 質量スペクトル, ¹³C-NMR ス ペクトル及び ¹H-detected heteronuclear multiple bond correlation (HMBC) スペクトルにより行っ た. 一方, Barton らは ergosterol acetate を過酸化 水素及び触媒量の FeCl₃ と反応させることにより 化合物 **9** の 3β -acetate 体を得ている. ^{22,23)}

著者らは、更に 5α.9α-epidioxy 基を有するステ ロールの検索を行い,キシメジ科の食用キノコで あるムキタケ (Panellus serotinus) から化合物 9 及び 10 と共に、 5α , 9α -epidioxy-(22*E*)-ergosta-7,22-dien-3β,6α-diol (**11**) 及びその6位の水酸基 に関するエピマーである $5\alpha,9\alpha$ -epidioxy-(22E)ergosta-7,22-dien-3β,6β-diol (12) を見出すことが できた (Fig. 4).^{24,25)} これらの構造は, ¹H - ¹H shift correlation spectroscopy $(^{1}H - ^{1}H COSY)$, HMBC \nearrow ペクトルなどの二次元 NMR 法を検討することによ り決定した.特に,化合物 11 の6位の立体配置に ついては nuclear Overhauser effect correlation spectroscopy (NOESY) スペクトルにおいて、19位 のメチル基と6位の水酸基の付け根のメチンプロト ンとの間に NOE が認められたことからα配置と決 定した.また,化合物12の6位の水酸基の立体配 置については、19位のメチル基に対する6位の水 酸基の pyridine - induced shift からβ配置と決定し た.^{10,11)}一方, ヒラタケ科 (Pleurotaceae) の食用 キノコであるエリンギ (Pleurotus eryngii) からは

Fig. 4. Structures of Compounds 9 - 13

Fig. 5. Structures of Compounds 14 - 20

 $5\alpha,9\alpha$ -epidioxy- $8\alpha,14\alpha$ -epoxy-(22E)-ergosta-6,22-dien- 3β -ol (**13**) を得ることができた (Fig. 4).²⁶⁾ 本化合 物は, $5\alpha,9\alpha$ -epidioxy- $8\alpha,14\alpha$ -epoxy- 3β -hydroxy- Δ^6 構 造を有するステロールの最初の例である.

4) エノン, ジエン及びケトンを有するステロール

著者らは, エリンギのステロール成分の検索 の途上, 分子内にエノン構造を有する 3β,5αdihydroxyergost-7-en-6-one (14) を得ることができ た (Fig. 5).²⁶⁾ Aiello らは, 化合物 **14** の側鎖部分に 関する類似体(化合物 15) を海綿動物 Oscarella lobularis から単離,報告している (Fig. 5).²⁷⁾一方, モエギタケ科(Strophariaseace)の食用キノコであ るナメコ (Pholiota nameko) からは、 $3\beta,5\alpha,9\alpha$ trihydroxyergost-7-en-6-one (16) 及び $3\beta,5\alpha,9\alpha,14\alpha$ tetrahydroxy-(22E)-ergosta-7,22-dien-6-one (**17**) を単離することができた(Fig. 5).¹²⁾ 化合物 16 及 び17は、ホンシメジ、⁹⁾ ヒラタケ¹²⁾ からも得ら れており、また、イボタケ科 (Thelephoraceae) の 食用キノコであるコウタケ (Sarcodon aspratus) からも証明された.²⁸⁾一方,マツタケからは化合 物17の14位の水酸基に関するエピマーである 3β , 5α , 9α , 14β -tetrahydroxy-(22E)-ergosta-7, 22-dien-6-one (**18**) が単離された (Fig. 5).²⁵⁾ 本化合物の ように、ステロイド骨格のC環とD環がシス結合 で、14位に β 配置の水酸基を有するステロールが キノコ類から確認されたのは著者らの報告が初め てである.14位の水酸基の立体配置については NOESY スペクトルと pyridine - induced shift によ り決定した.また、著者らは、マイタケのステ ロール成分について再検討を行い、分子内に共役 ジエン構造を有する (22*E*)-ergosta-7,9(11),22triene-3 β ,5 α ,6 β -trihydroxy-(22*E*)-ergost-22-en-7-one **(20)** を単離することができた (Fig. 5).¹⁸⁾

5) 3,5,6,9-Tetrol 及び 3,5,6,7-tetrol 構造を有するス テロール

著者らは、シイタケのステロール成分について再 度、詳細な検討を行った.その結果、分子内に4個 の水酸基を有する (22*E*)-ergosta-7,22-diene- 3β ,5 α , 6α ,9 α -tetrol (**21**) を得ることができた (Fig. 6).¹²⁾ 本化合物は、テングタケ、⁹⁾シロオニタケ、⁹⁾シモフ リシメジ、⁹⁾ エノキタケ、¹²⁾ ブナシメジ、¹²⁾ ヒラタ ケ、¹²⁾ ナメコ¹²⁾ などからも得られ、多くのキノコ に含有していることを明らかにした.また、化合物 **21** の類似体としてシロオニタケから ergost-7-ene- 3β ,5 α , 6β ,9 α -tetrol (**22**) が単離された (Fig. 6).⁹⁾ Migliuolo らは、化合物 **22** の側鎖部分に関する類似 体 (化合物 **23**) を海綿動物 Spongia officinalis から 単離,報告している (Fig. 6).²⁹⁾ 一方,マイタケか らは (22*E*)-ergosta-8,22-diene-3*β*,5*α*,6*β*,7*α*-tetrol (24) 及び (22*E*)-ergosta-8(14),22-diene-3*β*,5*α*,6*β*, 7*α*-tetrol (25) を得ることができた (Fig. 6).¹⁸⁾ Costantino らは,化合物 24 及び 25 の側鎖部分に 関する類似体 (化合物 26 及び 27) を海綿動物 *Neofibularia nolitangere* から単離し,報告してい る (Fig. 6).³⁰⁾

6) 1,2,3,4,5,10,19-Heptanor 構造を有するステロール

サルノコシカケ科に属するチョレイマイタケ (Polyporus umbellatus)の菌核はチョレイと称さ れ,日本薬局方に収載されている.著者らは,こ れまでに十分な検討がなされていなかったチョレ イのステロール成分について検索を行い,9αhydroxy-1,2,3,4,5,10,19-heptanor-(22E)-ergosta-7,22-diene-6,9-lactone (28) を単離することができ た (Fig. 6). ^{31,32)} 化合物 28 は, ステロイド骨格の A 環部分が欠如し、更に、B 環部分が α , β -不飽 和-γ-ラクトンに変化しているノルステロールであ るが, 最近, Kawagishiらは, オキナタケ科 (Bolbitiaceae) に属するキノコであるチャキタケ (Agrocybe chaxingu) から破骨細胞形成阻害物質 として本化合物の単離を報告している.33)また, Mansoor らも海綿動物 Homaxinella sp. から単離し ており、その生合成経路についての考察も行ってい る (Fig. 7). ³⁴⁾ 更に,本化合物の 9 α 位の水酸基が メトキシ基に置き換わった化合物がベニタケ科 (Russulaceae) のキノコであるチチタケ (*Lactarius* volemus) ³⁵⁾ と海綿動物 *Dictyonella incisa* ³⁶⁾ から 報告されている.一方, Riccardis らは,ビタミン D₂ から化合物 **28** の合成に成功している.³⁷⁾

7) 23-Methylergostane 型ステロール

これまでに述べてきたステロールの化学構造上 の特徴は, 主に, ステロイド骨格内の置換基の種 類とそれらのパターンの多様性に限られていた. しかし, 著者らはシイタケから, キノコ由来とし ては初めてである側鎖部分の23位にメチル基を有 するステロール, (22E)-23-methylergosta-5,7, 22-trien-3 β -ol (**29**), 5 α ,8 α -epidioxy-(22*E*)-23methylergosta-6,22-dien-3 β -ol (**30**), 3β , 5α , 9α trihydroxy-(22E)-23-methylergosta-7,22-dien-6-one (31), (22E)-23-methylergosta-7,22-diene- 3β , 5α , 6β -triol (**32**) 及び (22*E*)-23-methylergosta-7,22diene- 3β , 5α , 6β , 9α -tetrol (**33**) を見出すことができた (Fig. 8). 9,12,13) このような側鎖を有するステロール はこれまでに腔腸動物の軟体サンゴ Sarcophyton glaucum³⁸⁾ などから数例の報告があり, ³⁹⁻⁴²⁾ また, 化合物 30 の 3β-sulfate 体が珪藻の Odontella aurita から1例,報告されている.43)

Fig. 6. Structures of Compounds 21 - 28

Fig. 7. Plausible Biosynthetic Pathway of Compound 28 from Ergosterol Peroxide

Fig. 8. Structures of Compounds 29 - 33

8) Lanostane型トリテルペノイド

著者らは、モエギタケ科の食用キノコであるク リタケ(*Naematoloma sublateritium*)の成分に ついて検討を行った.その結果,sublateriol A - C (**34** - **36**)と命名した化合物を得ることができた (Fig. 9).²⁵⁾これらは lanostane 型に分類されるト リテルペノイドであり、ステロールと化学構造上 及び生合成上密接な関連性がある.また、化合物 34-36は、これまでに検索したキノコ類には認 められない特徴的な化学構造を有している.その 中でも特に、化合物 36 は天然物としては稀な A 環 に diosphenol 構造を有しているが、⁴⁴⁻⁴⁶⁾ これは UV

Fig. 9. Structures of Compounds 34 - 36

スペクトル (λ_{max} 267 nm) と NMR スペクトルか ら明らかにすることができた.

おわりに

本稿では,著者らがこれまでに行ってきたキノ コ由来の新規ステロールの分子構造研究について 概説した.近年,キノコ由来のステロールに抗炎 症活性,抗発がんプロモーター活性,抗腫瘍活性, 抗結核菌活性などが見いだされ,生理活性成分研 究の面からも注目されている.キノコの種類は, 日本に自生しているものだけでも4000種とも5000 種ともいわれている.⁴⁷⁾ 今後,この膨大な資源か ら人類にとって有用な化合物が探索され,その分 子構造が解明されることにより,それが創薬の源 流となり,更なる研究が発展することを期待する.

REFERENCES

- Mimaki Y., "Chemistry of Organic Natural Products," Chap. 4, eds. by Ebizuka Y., Morita H., Nankodo, Tokyo, 2007, pp. 194 - 199.
- Kobori M., Yoshida M., Ohnishi-Kameyama M., Shinmoto H., British J. Pharmacol., 150, 209 - 219 (2007).
- Yasukawa K., Aoki T., Takido M., Ikekawa T., Saito H., Matsuzawa T., *Phytotherapy Res.*, 8, 8 – 10 (1994).
- 4) Yasukawa K., Akihisa T., Nihon Yukagakkaishi, 49,

571 - 582 (2000).

- 5) Akihisa T., Franzblau S. G., Tokuda H., Tagata M., Ukita M., Matsuzawa T., Metori K., Kimura Y., Suzuki T., Yasukawa K., *Biol. Pharm. Bull.*, 28, 1117 - 1119 (2005).
- Lee J., Ma C., Park D., Yoshimi Y., Hatanaka M., Hattori M., *Biol. Pharm. Bull.*, **31**, 949 - 954 (2008).
- Ikekawa T., Nakanishi M., Uehara N., Chihara G., Fukuoka F., *Gann*, **59**, 155 - 157 (1968).
- Yaoita Y., Ebina K., Kakuda R., Machida K., Kikuchi M., *Natural Medicines*, 56, 117 – 119 (2002).
- Yaoita Y., Endo M., Tani Y., Machida K., Amemiya K., Furumura K., Kikuchi M., *Chem. Pharm. Bull.*, **47**, 847 - 851 (1999).
- 10) Demarco P. V., Farkas E., Doddrell D., Mylari B. L., Wenkert E., J. Am. Chem. Soc., 90, 5480 - 5486 (1968).
- Fujimoto Y., Yamada T., Ikekawa N., Chem. Pharm. Bull., 33, 3129 - 3133 (1985).
- 12) Yaoita Y., Amemiya K., Ohnuma H., Furumura K., Masaki A., Matsuki T., Kikuchi M., *Chem. Pharm.* Bull., 46, 944 - 950 (1998).
- 13) Ohnuma N., Amemiya K., Kakuda R., Yaoita Y., Machida K., Kikuchi M., *Chem. Pharm. Bull.*, 48, 749 - 751 (2000).
- Ohnuma N., Yaoita Y., Kakuda R., Machida K., Kikuchi
 M., J. Tohoku Pharmaceutical University, 47, 67 –

70 (2000).

- Good L. F., Akihisa T., "Analysis of Sterols," Chapman & Hall, London, 1997, pp. 144 151.
- 16) Ishizuka T., Yaoita Y., Kikuchi M., Natural Medicines,
 52, 276 278 (1998).
- Ishizuka T., Yaoita Y., Kikuchi M., Tohoku Yakka Daigaku Kenkyu Nempo, 45, 135 - 138 (1998).
- 18) Ishizuka T., Yaoita Y., Kikuchi M., Chem. Pharm. Bull., 45, 1756 - 1760 (1997).
- 19) Luo X., Li F., Shinde P. B., Hong J., Lee C., Im K. S., Jung J. H., J. Nat. Prod., 69, 1760 - 1768 (2006).
- Yaoita Y., Tominari K., Kakuda R., Machida K., Kikuchi M., *Natural Medicines*, 54, 105 (2000).
- 21) Mansoor T. A., Lee Y. M., Hong J., Lee C., Im K. S., Jung J. H., J. Nat. Prod., 69, 131 - 134 (2006).
- 22) Barton D. H. R., Hu B., Reibenspies J. H., J. Chem. Crystallogr., 28, 239 - 241 (1998).
- 23) Barton D. H. R., Choi S., Hu B., Smith J. A., Tetrahedron, 54, 3367 - 3378 (1998).
- 24) Iijima T., Matsuki K., Yaoita Y., Kakuda R., Machida K., Kikuchi M., J. Tohoku Pharmaceutical University, 48, 77 - 81 (2001).
- 25) Yaoita Y., Matsuki K., Iijima T., Nakano S., Kakuda R.,
 Machida K., Kikuchi M., *Chem. Pharm. Bull.*, 49, 589 594 (2001).
- 26) Yaoita Y., Yoshimura Y., Kakuda R., Machida K., Kikuchi M., Chem. Pharm. Bull., 50, 551 - 553 (2002).
- 27) Aiello A., Fattorusso E., Magno S., Menna M., Steroids, 56, 337 - 340 (1991).
- 28) Ueno T., Yaoita Y., Kakuda R., Machida K., Kikuchi M., J. Tohoku Pharmaceutical University, 46, 71 – 76 (1999).
- 29) Migliulo A., Notaro G., Piccialli V., Sica D., J. Nat. Prod., 53, 1414 - 1424 (1990).
- Costantino V., Fattorusso E., Mangoni A., Pansini M., Steroids, 60, 768 - 772 (1995).
- 31) Ohta K., Yaoita Y., Matsuda N., Kikuchi M., Natural

Medicines, **50**, 179 - 181 (1996).

- 32) Ohta K., Yaoita Y., Kikuchi M., Natural Medicines, 50, 366 (1996).
- 33) Kawagishi H., Akachi T., Ogawa T., Masuda K., Yamaguchi K., Yazawa K., Takahashi M., *Heterocycles*, 69, 253 - 258 (2006).
- 34) Mansoor T. A., Hong J., Lee C., Bae S., Im K. S., Jung J. H., J. Nat. Prod., 68, 331 - 336 (2005).
- 35) Kobata K., Wada T., Hayashi Y., Shibata H., Biosci. Biotech. Biochem., 58, 1542 - 1544 (1994).
- 36) Ciminiello P., Fattorusso E., Magno S., Mangoni A., Pansini M., J. Am. Chem. Soc., **112**, 3505 – 3509 (1990).
- 37) Riccardis F. D., Spinella A., Izzo I., Giordano A., Sodano G., *Tetrahedron Lett.*, **36**, 4303 - 4306 (1995).
- 38) Kobayashi M., Tomioka A., Hayashi T., Mitsuhashi H., Chem. Pharm. Bull., 27, 1951 - 1953 (1979).
- 39) Bohlin L., Sjostrand U., Djerassi C., Sullivan B. W., J. Chem. Soc. Perkin Trans. 1, 1981, 1023 - 1028.
- 40) Whithers N. W., Kokke W. C. M. C., Fenical W., Djerassi C., *Proc. Natl. Acad. Sci. U.S.A.*, **79**, 3764 – 3768 (1982).
- Kokke W. C. M. C., Boholin L., Fenical W., Djerassi C., *Phytochemistry*, **21**, 881 - 887 (1982).
- 42) Kobayashi J., Ishibashi M., Nakamura H., Ohizumi Y., Hirata Y., J. Chem. Soc. Perkin Trans. 1, 1989, 101 - 103.
- 43) Toume K., Ishibashi M., *Phytochemistry*, **61**, 359 360 (2002).
- 44) Hattori M., Kuo K., Shu Y., Tezuka Y., Kikuchi T., Namba T., *Phytochemistry*, 27, 3975 - 3976 (1988).
- 45) Trinto W. F., Blair L. C., Reynolds W. F., McLean S., J. Nat. Prod., 55, 701 - 706 (1992).
- 46) Trinto W. F., John L. M. D., Reynolds W. F., McLean S., J. Nat. Prod., 55, 807 - 809 (1992).
- 47) "Fugi of Japan," eds. by Imazeki R., Otani Y., Hongo T., Yama-Kei, Tokyo, 1988, pp. 14 - 15.